Heat Semigroups and Inverses of Twisted Laplacians on Nonisotropic Heisenberg Groups with Multi-Dimensional Center ${ }^{1}$

M. W. Wong and Shengwen Yang
Department of Mathematics and Statistics
York University
4700 Keele Street
Toronto, Ontario M3J 1P3
Canada

E-Mail: mwwong@yorku.ca, shengwenyang731@gmail.com

Abstract

A formula for the heat semigroups generated by the twisted Laplacians in terms of Weyl transforms is given. $L^{p}-L^{q}$ estimates for the heat semigroups are also given. The twisted Laplacians on Heisenberg groups with multi-dimensional center are shown to be globally hypoelliptic in the Schwartz space and in the Gelfand-Shilov spaces using the Green functions of the twisted Laplacians. Global regularity in a scale of Sobolev spaces for these twisted Laplacians are presented as well.

2010 Mathematics Subject Classification: Primary 35J70; Secondary 35A08, 35A22

Key Words: Heisenberg groups, Fourier-Wigner transforms, Weyl transforms, twisted Laplacians, Hermite functions, twisted convolutions, heat kernels, heat semigroups, $L^{p}-L^{q}$ estimates, Green functions, modified Bessel functions, global hypoellipticity, Schwartz spaces, Gelfand-Shilov spaces

1 Introduction

The aim of this paper is to look at some aspects of analysis and partial differential equations on a class of nonisotropic Heisenberg groups with multidimensional center. We begin with a description of the Laplacians on the nonisotropic Heisenberg groups with multi-dimensional center.

[^0]Let $B_{1}, B_{2}, \ldots, B_{m}$ be $n \times n$ orthogonal matrices with real entries such that

$$
B_{j}^{-1} B_{k}=-B_{k}^{-1} B_{j}
$$

for all $j, k=1,2, \ldots, m$ with $j \neq k$. Then we define the nonisotropic Heisenberg group \mathbb{G} with multi-dimensional center to be the set $\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{m}$ equipped with the binary operation \cdot given by

$$
(z, t) \cdot(w, s)=\left(z+w, t+s+\frac{1}{2}[z, w]\right)
$$

for all (z, t) and (w, s) in $\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{m}$, where $z=(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$, $w=(u, v) \in \mathbb{R}^{n} \times \mathbb{R}^{n}, t, s \in \mathbb{R}^{m}$ and $[z, w] \in \mathbb{R}^{m}$ is given by

$$
[z, w]_{j}=u \cdot B_{j} y-x \cdot B_{j} v, \quad j=1,2, \ldots, m
$$

The center Z of the nonisotropic Heisenberg group \mathbb{G} with multi-dimensional center is m-dimensional and is given by

$$
Z=\left\{(0,0, t): t \in \mathbb{R}^{m}\right\}
$$

The following proposition on the dimension of a nonisotropic Heisenberg group and the dimension of its center can be found in [8].

Proposition 1.1 Let $\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{m}$ be the underlying manifold of a nonisotropic Heisenberg group. Then

$$
m^{2} \leq n
$$

Nonisotropic Heisenberg groups with multi-dimensional center are special cases of H-type groups in $[5,6,7]$. If $m=1$ and $B_{1}=-I_{n}$, where I_{n} is the $n \times n$ identity matrix, then we get back the ordinary n-dimensional Heisenberg group \mathbb{H}^{n}. In the book [15], for the sake of simplifying the notation and making the presentation transparent, we have chosen to study in detail the one-dimensional Heisenberg group \mathbb{H}^{1}.

Let \mathfrak{g} be the Lie algebra of all left-invariant vector fields on \mathbb{G}. For $j=1,2, \ldots, n$, let $\gamma_{1, j}: \mathbb{R} \rightarrow \mathbb{G}$ and $\gamma_{2, j}: \mathbb{R} \rightarrow \mathbb{G}$ be curves in \mathbb{G} given by

$$
\gamma_{1, j}(s)=\left(s e_{j}, 0,0\right)
$$

and

$$
\gamma_{2, j}(s)=\left(0, s e_{j}, 0\right)
$$

for all $s \in \mathbb{R}$, where e_{j} is the standard unit vector in \mathbb{R}^{n} with 1 in the $j^{t h}$ position. For $k=1,2, \ldots, m$, let $\gamma_{3, k}: \mathbb{R} \rightarrow \mathbb{G}$ be the curve in \mathbb{G} given by

$$
\gamma_{3, k}(s)=\left(0,0, s e_{k}\right)
$$

for all $s \in \mathbb{R}$, where e_{k} is the standard unit vector in \mathbb{R}^{m} with 1 in the $k^{t h}$ position. For $j=1,2, \ldots, n$, we define the left-invariant vector fields X_{j} and Y_{j} by

$$
\begin{aligned}
& \left(X_{j} f\right)(x, y, t) \\
= & \left.\frac{d}{d s} f\left((x, y, t) \cdot \gamma_{1, j}(s)\right)\right|_{s=0} \\
= & \left.\frac{d}{d s} f\left(x+s e_{j}, y,\left(t_{1}+\frac{1}{2}\left(B_{1} y, s e_{j}\right), \ldots, t_{m}+\frac{1}{2}\left(B_{m} y, s e_{j}\right)\right)\right)\right|_{s=0} \\
= & \frac{\partial f}{\partial x_{j}}(x, y, t)+\frac{1}{2} \sum_{k=1}^{m}\left(B_{k} y, e_{j}\right) \frac{\partial f}{\partial t_{k}}(x, y, t)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(Y_{j} f\right)(x, y, t) \\
= & \left.\frac{d}{d s} f\left((x, y, t) \cdot \gamma_{2, j}(s)\right)\right|_{s=0} \\
= & \left.\frac{d}{d s} f\left(x, y+s e_{j},\left(t_{1}-\frac{1}{2}\left(x, s B_{1} e_{j}\right), \ldots, t_{m}-\frac{1}{2}\left(x, s B_{m} e_{j}\right)\right)\right)\right|_{s=0} \\
= & \frac{\partial f}{\partial y_{j}}(x, y, t)-\frac{1}{2} \sum_{k=1}^{m}\left(x, B_{k} e_{j}\right) \frac{\partial f}{\partial t_{k}}(x, y, t)
\end{aligned}
$$

for all $(x, y, t) \in \mathbb{G}$ and all $f \in C^{\infty}(\mathbb{G})$. For $k=1,2, \ldots, m$, we define the vector field T_{k} by

$$
\begin{aligned}
& \left(T_{k} f\right)(x, y, t) \\
= & \left.\frac{d}{d s} f\left((x, y, t) \cdot \gamma_{3, k}(s)\right)\right|_{s=0} \\
= & \left.\frac{d}{d s} f\left(x, y, t+s e_{k}\right)\right|_{s=0} \\
= & \frac{\partial f}{\partial t_{k}}(x, y, t)
\end{aligned}
$$

for all $(x, y, t) \in \mathbb{G}$ and all $f \in C^{\infty}(\mathbb{G})$. We can easily check that

$$
\left[X_{j}, Y_{l}\right]=-\sum_{k=1}^{m}\left(B_{k}\right)_{j l} T_{k}, \quad j, l=1,2, \ldots, n
$$

and the other commutators are zero.
Theorem 1.2 The Lie algebra \mathfrak{g} of \mathbb{G} is generated by

$$
\left\{X_{j}, Y_{l},\left[X_{j}, Y_{l}\right]: j, l=1,2, \ldots, n\right\}
$$

The sub-Laplacian \mathcal{L} on \mathbb{G} is defined by

$$
\mathcal{L}=-\sum_{j=1}^{n}\left(X_{j}^{2}+Y_{j}^{2}\right)
$$

Explicitly,

$$
\begin{aligned}
\mathcal{L}= & -\Delta_{x}-\Delta_{y}-\frac{1}{4}\left(|x|^{2}+|y|^{2}\right) \Delta_{t} \\
& +\sum_{j=1}^{n} \sum_{k=1}^{m}\left[-\left(B_{k} y, e_{j}\right) \frac{\partial}{\partial x_{j}}+\left(x, B_{k} e_{j}\right) \frac{\partial}{\partial y_{j}}\right] \frac{\partial}{\partial t_{k}} .
\end{aligned}
$$

Let $\mathbb{R}^{m *}=\mathbb{R}^{m} \backslash\{0\}$. Then by taking the inverse Fourier transform of the sub-Laplacian with respect to t, we get parametrized twisted Laplacians $L^{\lambda}, \lambda \in \mathbb{R}^{m *}$, given by
$L^{\lambda}=-\Delta_{x}-\Delta_{y}+\frac{1}{4}\left(|x|^{2}+|y|^{2}\right)|\lambda|^{2}-i \sum_{j=1}^{n}\left\{-\left(B_{\lambda} y, e_{j}\right) \frac{\partial}{\partial x_{j}}+\left(x, B_{\lambda} e_{j}\right) \frac{\partial}{\partial y_{j}}\right\}$,
where

$$
\begin{equation*}
B_{\lambda}=\sum_{j=1}^{m} \lambda_{j} B_{j} . \tag{1.1}
\end{equation*}
$$

To recapitulate, the first four sections in this paper provide a recall of the nonisotropic Heisenberg group with multi-dimensional center, a family of twisted Laplacians on it parametrized by $\lambda \in \mathbb{R}^{m *}$ in the center, the heat kernels and the Green functions of these twisted Laplacians. We first give the $L^{p}-L^{q}$ estimates of the heat semigroup, also known as the strongly
continuous one-parameter semigroup, generated by L^{λ} for all $\lambda \in \mathbb{R}^{m *}$. We also prove that for all $\lambda \in \mathbb{R}^{m *}, L^{\lambda}$ is globally hypoelliptic in the Schwartz space \mathcal{S} and in the Gelfand-Shilov spaces S_{ν}^{μ}, where μ and ν are positive numbers with $\mu+\nu \geq 1$. Global hypoellipticity of differential operators can be found in [2]. In [3], global hypoellipticity, renamed global regularity, of second order twisted differential operators is further developed. Analogs of these resuts for the ordinary Heisenberg group with one-dimensional center can be found in, respectively, [4] and [13]. In addition, we construct a scale of Sobolev spaces to measure the global regularity of L^{λ}. The results on the heat semigroup are given in Sections 5-8. The results on global hypoellipticity are given in Sections 9 and 10. Essential self-adjointness and global regularity are given in, respectively, Sections 11 and 12.

2 Spectral Analysis of λ-Twisted Laplacians

For $k=0,1,2, \ldots$, the Hermite function e_{k} of order k on \mathbb{R} is defined by

$$
e_{k}(x)=\frac{1}{\left(2^{k} k!\sqrt{\pi}\right)^{1 / 2}} e^{-x^{2} / 2} H_{k}(x), \quad x \in \mathbb{R}
$$

where H_{k} is the Hermite polynomial of degree k given by

$$
H_{k}(x)=(-1)^{k} e^{x^{2}}\left(\frac{d}{d x}\right)^{k}\left(e^{-x^{2}}\right), \quad x \in \mathbb{R} .
$$

For every multi-index $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$, we define the function e_{α} on \mathbb{R}^{n} by

$$
e_{\alpha}=e_{\alpha_{1}} \otimes e_{\alpha_{2}} \otimes \cdots \otimes e_{\alpha_{n}}
$$

For all $\lambda \in \mathbb{R}^{m *}$ and all multi-indices α and β in $(\mathbb{N} \cup\{0\})^{n}$, we define the special Hermite function $e_{\alpha, \beta}^{\lambda}$ on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ by

$$
e_{\alpha, \beta}^{\lambda}(q, p)=|\lambda|^{n / 2} V^{\lambda}\left(e_{\alpha}, e_{\beta}\right)\left(\frac{q}{\sqrt{|\lambda|}}, \sqrt{|\lambda|} p\right), \quad q, p \in \mathbb{R}^{n}
$$

where

$$
\begin{equation*}
V^{\lambda}(f, g)(q, p)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{i\left(B \lambda^{t} q\right) \cdot y} f\left(y+\frac{p}{2}\right) \overline{g\left(y-\frac{p}{2}\right)} d y, \quad q, p \in \mathbb{R}^{n} \tag{2.1}
\end{equation*}
$$

for all f and g in \mathcal{S}. The matrix B_{λ}^{t} is the transpose of B_{λ}. In fact, $e_{\alpha, \beta}^{\lambda}$ is given by

$$
e_{\alpha, \beta}^{\lambda}(q, p)=V^{\lambda}\left(e_{\alpha}^{\lambda}, e_{\beta}^{\lambda}\right)(q, \sqrt{|\lambda|} p), \quad q, p \in \mathbb{R}^{n},
$$

where

$$
e_{\alpha}^{\lambda}(x)=|\lambda|^{n / 4} e_{\alpha}(\sqrt{|\lambda|} x), \quad x \in \mathbb{R}^{n} .
$$

Theorem $2.1\left\{e_{\alpha, \beta}^{\lambda}: \alpha, \beta \in(\mathbb{N} \cup\{0\})^{n}\right\}$ is an orthonormal basis for $L^{2}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$.

The following theorem gives the spectral analysis of the λ-twisted Laplacian for all $\lambda \in \mathbb{R}^{m *}$.

Theorem 2.2 Let $\lambda \in \mathbb{R}^{m *}$. Then for all multi-indices α and β in $(\mathbb{N} \cup$ $\{0\})^{n}$,

$$
L^{\lambda} e_{\alpha, \beta}^{\lambda}=|\lambda|^{n}(2|\beta|+n) e_{\alpha, \beta}^{\lambda} .
$$

All definitions and results in this section can be found in [9].

3λ-Weyl Transforms

We have defined the λ-Fourier-Wigner transform $V^{\lambda}(f, g)$ of f and g in \mathcal{S} by (2.1). In fact,

$$
V^{\lambda}(f, g)(q, p)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{i\left(B_{\lambda}^{t} q\right) \cdot x} f\left(x+\frac{p}{2}\right) \overline{g\left(x-\frac{p}{2}\right)} d x, \quad q, p \in \mathbb{R}^{n}
$$

It is easy to see that the λ-Fourier-Wigner transform is related to the ordinary Fourier-Wigner transform by

$$
V^{\lambda}(f, g)(q, p)=V(f, g)\left(B_{\lambda}^{t} q, p\right), \quad q, p \in \mathbb{R}^{n}
$$

Note that

$$
V^{\lambda}(f, g)(q,-p)=\overline{V^{\lambda}(g, f)}(q, p), \quad q, p \in \mathbb{R}^{n}
$$

Now, we define the λ-Wigner transform $W^{\lambda}(f, g)$ of f and g in $L^{2}\left(\mathbb{R}^{n}\right)$ to be the Fourier transform of $V^{\lambda}(f, g)$. In fact, the λ-Wigner transform has the form

$$
\begin{equation*}
W^{\lambda}(f, g)(x, \xi)=|\lambda|^{-n}(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{-i \xi \cdot p} f\left(\frac{B_{\lambda}^{t} x}{|\lambda|^{2}}+\frac{p}{2}\right) \overline{g\left(\frac{B_{\lambda}^{t} x}{|\lambda|^{2}}-\frac{p}{2}\right)} d p \tag{3.1}
\end{equation*}
$$

for all x and ξ in \mathbb{R}^{n}, and and it is related to the ordinary Wigner transform by

$$
W^{\lambda}(f, g)(x, \xi)=|\lambda|^{-n} W(f, g)\left(\frac{B_{\lambda}^{t} x}{|\lambda|^{2}}, \xi\right)
$$

for all x, ξ in \mathbb{R}^{n}. Moreover,

$$
W^{\lambda}(f, g)=\overline{W^{\lambda}(g, f)}, \quad f, g \in L^{2}\left(\mathbb{R}^{n}\right)
$$

Let $\sigma \in \mathcal{S}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ and $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Then we define the λ-Weyl transform $W_{\sigma}^{\lambda} f$ of f corresponding to the symbol σ by

$$
\begin{equation*}
\left(W_{\sigma}^{\lambda} f, g\right)_{L^{2}\left(\mathbb{R}^{n}\right)}=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \sigma(x, \xi) W^{\lambda}(f, g)(x, \xi) d x d \xi \tag{3.2}
\end{equation*}
$$

for all $g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Therefore using Parseval's identity, we have

$$
\left(W_{\sigma}^{\lambda} f, g\right)_{L^{2}\left(\mathbb{R}^{n}\right)}=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \hat{\sigma}(q, p) V^{\lambda}(f, g)(q, p) d q d p
$$

Hence, formally, we can write

$$
\left(W_{\sigma}^{\lambda} f\right)(x)=(2 \pi)^{-n} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \hat{\sigma}(q, p)\left(\pi_{\lambda}(q, p) f\right)(x) d q d p, \quad x \in \mathbb{R}^{n}
$$

Proposition 3.1 Let $\sigma \in \mathcal{S}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. Then the λ-Weyl transform W_{σ}^{λ} is given by

$$
W_{\sigma}^{\lambda}=W_{\sigma_{\lambda}}
$$

where $W_{\sigma_{\lambda}}$ is the ordinary Weyl transform corresponding to the symbol σ_{λ} given by

$$
\sigma_{\lambda}(x, \xi)=\sigma\left(B_{\lambda} x, \xi\right), \quad x, \xi \in \mathbb{R}^{n}
$$

Let F and G be functions in $L^{2}\left(\mathbb{R}^{2 n}\right)$. Then the λ-twisted convolution $F *_{\lambda} G$ of F and G is the function on $\mathbb{R}^{2 n}$ defined by

$$
\begin{equation*}
\left(F *_{\lambda} G\right)(z)=\int_{\mathbb{R}^{2 n}} F(z-w) G(w) e^{\frac{i}{2} \lambda \cdot[z, w]} d w, \quad z \in \mathbb{R}^{2 n} \tag{3.3}
\end{equation*}
$$

provided that the integral exists.
Theorem 3.2 Let σ and τ be in $L^{2}\left(\mathbb{R}^{2 n}\right)$. Then

$$
W_{\sigma}^{\lambda} W_{\tau}^{\lambda}=W_{\omega}^{\lambda}
$$

where $\omega \in L^{2}\left(\mathbb{R}^{2 n}\right)$ and $\hat{\omega}=(2 \pi)^{-n}\left(\hat{\sigma} *_{\lambda} \hat{\tau}\right)$.

We have the following Moyal identity for the λ-Wigner transform and the λ-Fourier-Wigner transform.

Proposition 3.3 For all $f_{1}, f_{2}, g_{1}, g_{2}$ in $L^{2}\left(\mathbb{R}^{n}\right)$,

$$
\left(W^{\lambda}\left(f_{1}, g_{1}\right), W^{\lambda}\left(f_{2}, g_{2}\right)\right)=|\lambda|^{-n}\left(f_{1}, f_{2}\right) \overline{\left(g_{1}, g_{2}\right)}
$$

and

$$
\left(V^{\lambda}\left(f_{1}, g_{1}\right), V^{\lambda}\left(f_{2}, g_{2}\right)\right)=|\lambda|^{-n}\left(f_{1}, f_{2}\right) \overline{\left(g_{1}, g_{2}\right)}
$$

4 Heat Kernels and Green Functions of λ-Twisted Laplacians

We recall in this section the heat kernel and the Green function of the λ twisted Laplacian $L^{\lambda}, \lambda \in \mathbb{R}^{m *}$, given in [9]. We first give the heat kernel of the λ-twisted Laplacian L^{λ}, which is the kernel of the integral operator $e^{-\tau L^{\lambda}}$ for $\tau>0$. The twisted convolution defined in (3.3) is the key ingredient in the following theorem.

Theorem 4.1 Let $\lambda \in \mathbb{R}^{m *}$. Then for all $f \in L^{2}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ and all $\tau>0$,

$$
e^{-\tau L^{\lambda}} f=k_{\tau}^{\lambda} *_{-\lambda} f,
$$

where

$$
k_{\tau}^{\lambda}(z)=(2 \pi)^{-n} \frac{|\lambda|^{n}}{\left[2 \sinh \left(|\lambda|^{n} \tau\right)\right]^{n}} e^{-\frac{1}{4}|\lambda||z|^{2} \operatorname{coth}\left(|\lambda|^{n} \tau\right)}
$$

for all $z \in \mathbb{R}^{2 n}$.
As a corollary, the heat kernel κ_{τ}^{λ} of the λ-twisted Laplacian L^{λ} for $\lambda \in \mathbb{R}^{m *}$ is given by

$$
\begin{align*}
\kappa_{\tau}^{\lambda}(z, w) & =k_{\tau}^{\lambda}(z-w) e^{-\frac{i}{2} \lambda \cdot[z, w]} \\
& =(2 \pi)^{-n} \frac{|\lambda|^{n}}{\left[2 \sinh \left(|\lambda|^{n} \tau\right)\right]^{n}} e^{-\frac{1}{4}|\lambda||z-w|^{2} \operatorname{coth}\left(\tau|\lambda|^{n}\right)} e^{-\frac{i}{2} \lambda \cdot[z, w]} \tag{4.1}
\end{align*}
$$

for all z and w in $\mathbb{R}^{2 n}$.
The Green function G^{λ} of L^{λ} is the kernel of the inverse $\left(L^{\lambda}\right)^{-1}$. The Green function G^{λ} is related to the heat kernel κ_{τ}^{λ} of L^{λ} by

$$
G^{\lambda}(z, w)=\int_{0}^{\infty} \kappa_{\tau}^{\lambda}(z, w) d \tau, \quad z, w \in \mathbb{R}^{2 n}
$$

Let

$$
g^{\lambda}(z)=\int_{0}^{\infty} k_{\tau}^{\lambda}(z) d \tau, \quad z \in \mathbb{R}^{2 n}
$$

Then the Green function G^{λ} of L^{λ} is given by

$$
G^{\lambda}(z, w)=e^{-\frac{i}{2} \lambda \cdot[z, w]} g^{\lambda}(z-w)
$$

for all z and w in $\mathbb{R}^{2 n}$. An explicit formula for g^{λ} is given in the following theorem.

Theorem 4.2 For all $z \in \mathbb{R}^{2 n}$,

$$
g^{\lambda}(z)=\frac{(\sqrt{2} \pi)^{-n}}{2 \sqrt{2 \pi}} \frac{\Gamma(n / 2)}{(\sqrt{|\lambda||z|})^{n-1}} K_{(n-1) / 2}\left(\frac{1}{4}|\lambda||z|^{2}\right)
$$

where $K_{(n-1) / 2}$ is the modified Bessel function of order $(n-1) / 2$ given by

$$
K_{(n-1) / 2}(x)=\int_{0}^{\infty} e^{-x \cosh \delta} \cosh ((n-1) \delta / 2) d \delta, \quad x>0
$$

5 Heat Semigroups Generated by λ-Twisted Laplacians on \mathbb{G}

A formula for the heat semigroup $e^{-\tau L^{\lambda}}, \tau>0$, on \mathbb{G} is given in the following theorem. It is an analog of the formula for the heat semigroup generated by the twisted Laplacian in the one-dimensional Heisenberg group given in [14].

Theorem 5.1 Let $f \in L^{2}\left(\mathbb{R}^{2 n}\right)$. Then for all $\lambda \in \mathbb{R}^{m *}$ with $|\lambda|=1$ and $\tau>0$,

$$
e^{-\tau L^{\lambda}} f=(2 \pi)^{n / 2} \sum_{\beta} e^{-\tau(2|\beta|+n)} V^{\lambda}\left(W_{\hat{f}}^{\lambda} e_{\beta}, e_{\beta}\right)
$$

Proof Let $f \in \mathcal{S}$. Then for $\tau>0$, we have

$$
\begin{equation*}
e^{-\tau L^{\lambda}} f=\sum_{\beta} \sum_{\alpha} e^{-\tau|\lambda|^{n}(2|\beta|+n)}\left(f, e_{\alpha, \beta}^{\lambda}\right) e_{\alpha, \beta}^{\lambda} \tag{5.1}
\end{equation*}
$$

where the series is convergent in $L^{2}\left(\mathbb{R}^{n}\right)$. Now, using the λ-Wigner transform and the Plancherel theorem,

$$
\begin{align*}
\left(f, e_{\alpha, \beta}^{\lambda}\right) & =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{2 n}} f(z) \overline{V^{\lambda}\left(e_{\alpha}, e_{\beta}\right)(z)} d z \\
& =\int_{\mathbb{R}^{2 n}} \hat{f}(\zeta) \overline{V^{\lambda}\left(e_{\alpha}, e_{\beta}\right)^{\wedge}(\zeta)} d \zeta \\
& =\int_{\mathbb{R}^{2 n}} \hat{f}(\zeta) \overline{W^{\lambda}\left(e_{\alpha}, e_{\beta}\right)(\zeta)} d \zeta \\
& =(2 \pi)^{n / 2}\left(W_{\hat{f}}^{\lambda} e_{\beta}, e_{\alpha}\right) . \tag{5.2}
\end{align*}
$$

Similarly, for all $g \in \mathcal{S}\left(\mathbb{R}^{2 n}\right)$, we have

$$
\begin{equation*}
\left(e_{\alpha, \beta}^{\lambda}, g\right)=\overline{\left(g, e_{\alpha, \beta}^{\lambda}\right)}=(2 \pi)^{n / 2} \overline{\left(W_{\hat{g}}^{\lambda} e_{\beta}, e_{\alpha}\right)}=(2 \pi)^{n / 2}\left(e_{\alpha}, W_{\hat{g}}^{\lambda} e_{\beta}\right) . \tag{5.3}
\end{equation*}
$$

So, by (5.1), (5.2) and (5.3),

$$
\begin{align*}
\left(e^{-\tau L^{\lambda}} f, g\right) & =(2 \pi)^{n} \sum_{\beta} \sum_{\alpha} e^{-\tau(2|\beta|+n)}\left(W_{\hat{f}}^{\lambda} e_{\beta}, e_{\alpha}\right)\left(e_{\alpha}, W_{\hat{g}}^{\lambda} e_{\beta}\right) \\
& =(2 \pi)^{n} \sum_{\beta} e^{-\tau(2|\beta|+n)} \sum_{\alpha}\left(W_{\hat{f}}^{\lambda} e_{\beta}, e_{\alpha}\right)\left(e_{\alpha}, W_{\hat{g}}^{\lambda} e_{\beta}\right) \\
& =(2 \pi)^{n} \sum_{\beta} e^{-\tau(2|\beta|+n)}\left(W_{\hat{f}}^{\lambda} e_{\beta}, W_{\hat{g}}^{\lambda} e_{\beta}\right) \tag{5.4}
\end{align*}
$$

for all $\tau>0$. Using the definition of the λ-Weyl transform and Plancherel's theorem,

$$
\begin{align*}
\left(W_{\hat{f}}^{\lambda} e_{\beta}, W_{\hat{g}}^{\lambda} e_{\beta}\right) & =(2 \pi)^{-n / 2} \overline{\int_{\mathbb{R}^{2 n}} \hat{g}(z) W^{\lambda}\left(e_{\beta}, W_{\hat{f}}^{\lambda} e_{\beta}\right)(z) d z} \\
& =(2 \pi)^{-n / 2} \int_{\mathbb{R}^{2 n}} W^{\lambda}\left(W_{\hat{f}}^{\lambda} e_{\beta}, e_{\beta}\right)(z) \overline{\hat{g}(z)} d z \\
& =(2 \pi)^{-n / 2} \int_{\mathbb{R}^{2 n}} V^{\lambda}\left(W_{\hat{f}}^{\lambda} e_{\beta}, e_{\beta}\right)(z) \overline{g(z)} d z \tag{5.5}
\end{align*}
$$

for all multi-indices β. By (5.4) and (5.5),

$$
\begin{aligned}
\left(e^{-\tau L^{\lambda}} f, g\right) & =(2 \pi)^{n / 2} \sum_{\beta} e^{-\tau(2|\beta|+n)}\left(V^{\lambda}\left(W_{\hat{f}}^{\lambda} e^{\beta}, e_{\beta}\right), g\right) \\
& =(2 \pi)^{n / 2}\left(\sum_{\beta} e^{-\tau(2|\beta|+n)} V^{\lambda}\left(W_{\hat{f}}^{\lambda} e_{\beta}, e_{\beta}\right), g\right)
\end{aligned}
$$

for all f and g in $\mathcal{S}\left(\mathbb{R}^{n}\right)$ and all $\tau>0$. Thus,

$$
e^{-\tau L^{\lambda}} f=(2 \pi)^{n / 2} \sum_{\beta} e^{-\tau(2|\beta|+n)} V^{\lambda}\left(W_{\hat{f}}^{\lambda} e_{\beta}, e_{\beta}\right)
$$

for all $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and all $\tau>0$.

6 An $L^{p}-L^{2}$ Estimate

We begin with the following improvement of Theorem 11.1 in [13].
Theorem 6.1 Let $\sigma \in L^{p}\left(\mathbb{R}^{2 n}\right), 1 \leq p \leq 2$. Then for $\lambda \in \mathbb{R}^{m *}$, the λ-Weyl transform $W_{\hat{\sigma}}^{\lambda}$, originally defined on $\mathcal{S}\left(\mathbb{R}^{n}\right)$, can be extended to a unique bounded linear operator on $L^{2}\left(\mathbb{R}^{n}\right)$. Moreover,

$$
\left\|W_{\hat{\sigma}}^{\lambda}\right\|_{*} \leq(2 \pi)^{-n / 2}(2 /|\lambda|)^{n\left(1-\left(2 / p^{\prime}\right)\right)}\|\sigma\|_{L^{p}\left(\mathbb{R}^{2 n}\right)}
$$

where $\left\|\|_{*}\right.$ is the norm in the C^{*}-algebra of all bounded linear operators on $L^{2}\left(\mathbb{R}^{n}\right)$.

Proof Let $\sigma \in L^{2}\left(\mathbb{R}^{2 n}\right)$. Then for all f and g in $L^{2}\left(\mathbb{R}^{n}\right)$, we get by (3.2), the Schwarz inequality and the Plancherel theorem,

$$
\begin{aligned}
\left|\left(W_{\hat{\sigma}}^{\lambda} f, g\right)_{L^{2}\left(\mathbb{R}^{n}\right)}\right| & \leq(2 \pi)^{-n / 2}\|\hat{\sigma}\|_{L^{2}\left(\mathbb{R}^{2 n}\right)}\left\|W^{\lambda}(f, g)\right\|_{L^{2}\left(\mathbb{R}^{2 n}\right)} \\
& =(2 \pi)^{-n / 2}\|\sigma\|_{L^{2}\left(\mathbb{R}^{2 n}\right)}\left\|W^{\lambda}(f, g)\right\|_{L^{2}\left(\mathbb{R}^{2 n}\right)} .
\end{aligned}
$$

By Moyal's identity in Proposition 3.3,

$$
\left\|W^{\lambda}(f, g)\right\|_{L^{2}\left(\mathbb{R}^{2 n}\right)}=\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}\|g\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

Therefore

$$
\left|\left(W_{\hat{\sigma}}^{\lambda} f, g\right)_{L^{2}\left(\mathbb{R}^{n}\right)}\right| \leq(2 \pi)^{-n / 2}\|\sigma\|_{L^{2}\left(\mathbb{R}^{2 n}\right)}\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}\|g\|_{L^{2}\left(\mathbb{R}^{n}\right)}, \quad f, g \in L^{2}\left(\mathbb{R}^{n}\right)
$$

So,

$$
\left\|W_{\hat{\sigma}}^{\lambda} f\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leq(2 \pi)^{-n / 2}\|\sigma\|_{L^{2}\left(\mathbb{R}^{2 n}\right)}\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}, \quad f \in L^{2}\left(\mathbb{R}^{n}\right)
$$

Now, let $\sigma \in L^{1}\left(\mathbb{R}^{2 n}\right)$. Then for all f and g in $L^{2}\left(\mathbb{R}^{n}\right)$, we get by (3.2) and Hölder's inequality,

$$
\left|\left(W_{\hat{\sigma}}^{\lambda} f, g\right)_{L^{2}\left(\mathbb{R}^{2 n}\right)}\right| \leq(2 \pi)^{-n / 2}\|\hat{\sigma}\|_{L^{1}\left(\mathbb{R}^{2 n}\right)}\left\|V^{\lambda}(f, g)\right\|_{L^{\infty}\left(\mathbb{R}^{2 n}\right)}
$$

By (3.1) and the Schwarz inequality,

$$
\begin{aligned}
& \left\|W^{\lambda}(f, g)\right\|_{L^{\infty}\left(\mathbb{R}^{2 n}\right)} \\
\leq & (2 \pi)^{-n / 2}|\lambda|^{-n}\left[\int_{\mathbb{R}^{n}}\left|f\left(\frac{B_{\lambda}^{t} x}{|\lambda|^{2}}+\frac{p}{2}\right)\right|^{2} d p\right]^{\frac{1}{2}}\left[\int_{\mathbb{R}^{n}}\left|g\left(\frac{B_{\lambda}^{t} x}{|\lambda|^{2}}-\frac{p}{2}\right)\right|^{2} d p\right]^{\frac{1}{2}} \\
= & (2 \pi)^{-n / 2}|\lambda|^{-n} 2^{n}\|\sigma\|_{L^{1}\left(\mathbb{R}^{2 n}\right)} \mid f\left\|_{L^{2}\left(\mathbb{R}^{n}\right)}\right\| g \|_{L^{2}\left(\mathbb{R}^{n}\right)} .
\end{aligned}
$$

Let $\sigma \in L^{p}\left(\mathbb{R}^{2 n}\right)$. Then by the Riesz-Thorin theorem, we get for all f in $L^{2}\left(\mathbb{R}^{n}\right)$,

$$
\begin{align*}
& \left\|W_{\hat{\sigma}}^{\lambda} f\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \\
\leq & {\left[(2 \pi)^{-n / 2}\right]^{2 / p^{\prime}}\left[(2 \pi)^{-n / 2} 2^{n}|\lambda|^{-n}\right]^{1-\left(2 / p^{\prime}\right)}\|\sigma\|_{L^{p}\left(\mathbb{R}^{2 n}\right)}\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)} } \\
= & (2 \pi)^{-n / 2}(2 /|\lambda|)^{n\left(1-\left(2 / p^{\prime}\right)\right)}\|\sigma\|_{L^{p}\left(\mathbb{R}^{2 n}\right)}\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)} . \tag{6.1}
\end{align*}
$$

By (6.1), the proof is complete.
Theorem 6.2 For $\tau>0$, the heat semigroup $e^{-\tau L^{\lambda}}$ with $|\lambda|=1$, initially defined on $\mathcal{S}\left(\mathbb{R}^{2 n}\right)$, can be extended to a unique bounded linear operator from $L^{p}\left(\mathbb{R}^{2 n}\right)$ into $L^{2}\left(\mathbb{R}^{2 n}\right)$, which we again denote by $e^{-\tau L^{\lambda}}$, and

$$
\left\|e^{-\tau L^{\lambda}} f\right\|_{L^{2}\left(\mathbb{R}^{2 n}\right)} \leq 2^{n\left(1-\left(2 / p^{\prime}\right)\right)} \frac{1}{[2 \sinh \tau]^{n}}\|f\|_{L^{p}\left(\mathbb{R}^{2 n}\right)}
$$

for all $f \in L^{p}\left(\mathbb{R}^{2 n}\right), 1 \leq p \leq 2$.
Proof By Theorem 5.1, Minkowski's inequality and the Moyal identity for the λ-Fourier-Wigner transform, we get for all $f \in \mathcal{S}\left(\mathbb{R}^{2 n}\right)$,

$$
\begin{align*}
\left\|e^{-\tau L^{\lambda}} f\right\|_{L^{2}\left(\mathbb{R}^{2 n}\right)} & \left.\leq(2 \pi)^{n / 2} \sum_{\beta} e^{-\tau(2|\beta|+n)} \| V^{\lambda}\left(W_{\hat{f}}^{\lambda} e_{\beta}, e_{\beta}\right)\right) \|_{L^{2}\left(\mathbb{R}^{2 n}\right)} \\
& =(2 \pi)^{n / 2} \sum_{\beta} e^{-\tau(2|\beta|+n)}\left\|W_{\hat{f}}^{\lambda} e_{\beta}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}\left\|e_{\beta}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \\
& =(2 \pi)^{n / 2}|\lambda|^{n} \sum_{\beta} e^{-\tau|\lambda|^{n}(2|\beta|+n)}\left\|W_{\hat{f}}^{\lambda} e_{\beta}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \tag{6.2}
\end{align*}
$$

for $\tau>0$. So, by (6.2) and Theorem 6.1, we get for $\tau>0$,

$$
\begin{aligned}
\left\|e^{-\tau L^{\lambda}} f\right\|_{L^{2}\left(\mathbb{R}^{2 n}\right)} & \leq \sum_{\beta} e^{-\tau(2|\beta|+n)}\|f\|_{L^{p}\left(\mathbb{R}^{2 n}\right)} \\
& =2^{n\left(1-\left(2 / p^{\prime}\right)\right)} \frac{1}{\left[2 \sinh \left(|\lambda|^{n} \tau\right)\right]^{n}}\|f\|_{L^{p}\left(\mathbb{R}^{2 n}\right)}
\end{aligned}
$$

$7 \quad L^{p}-L^{\infty}$ Estimates, $1 \leq p \leq \infty$

We begin with the following theorem.
Theorem 7.1 Let $\lambda \in \mathbb{R}^{m *}$, Then for all $\tau>0$ and $1 \leq p \leq \infty, e^{-\tau L^{\lambda}}$: $L^{p}\left(\mathbb{R}^{2 n}\right) \rightarrow L^{\infty}\left(\mathbb{R}^{2 n}\right)$ is a bounded linear operator. More precisely,

$$
\left\|e^{-\tau L^{\lambda}} f\right\|_{L^{\infty}\left(\mathbb{R}^{2 n}\right)} \leq(2 \pi)^{-n / p} \frac{|\lambda|^{n / p}}{\left[\sinh \left(|\lambda|^{n} \tau\right)\right]^{n / p}} \frac{1}{\left[\cosh \left(|\lambda|^{n} \tau\right)\right]^{n / p^{\prime}}}\|f\|_{L^{p}\left(\mathbb{R}^{2 n}\right)}
$$

for all $f \in L^{p}\left(\mathbb{R}^{2 n}\right)$.
Proof Using the formula (4.1) for the heat kernel κ_{τ}^{λ} of L^{λ},

$$
\left|\kappa_{\tau}^{\lambda}(z, w)\right| \leq a_{\tau}
$$

for all z and w in \mathbb{C}^{n} and $\tau>0$, where

$$
a_{\tau}=(2 \pi)^{-n} \frac{|\lambda|^{n}}{\left[2 \sinh \left(|\lambda|^{n} \tau\right)\right]^{n}} .
$$

So, for all $f \in L^{1}\left(\mathbb{R}^{2 n}\right)$,

$$
\left|\left(e^{-\tau L^{\lambda}} f\right)(z)\right| \leq \int_{\mathbb{C}^{n}}|\kappa(z, w)||f(w)| d w=a_{\tau}\|f\|_{L^{1}\left(\mathbb{R}^{2 n}\right)}
$$

for all $z \in \mathbb{C}^{n}$. Therefore

$$
\left\|e^{-\tau L^{\lambda}} f\right\|_{L^{\infty}\left(\mathbb{R}^{2 n}\right)} \leq a_{\tau}\|f\|_{L^{1}\left(\mathbb{R}^{2 n}\right)}
$$

Now, for all $f \in L^{\infty}\left(\mathbb{R}^{2 n}\right)$,

$$
\begin{aligned}
\left|\left(e^{-\tau L^{\lambda}} f\right)(z)\right| & \leq\|f\|_{L^{\infty}\left(\mathbb{R}^{2 n}\right)} \int_{\mathbb{C}^{n}}\left|\kappa_{\tau}(z, w)\right| d w \\
& \leq a_{\tau} \int_{\mathbb{C}^{n}} e^{-\frac{1}{4}|\lambda||w|^{2} \operatorname{coth}\left(\tau|\lambda|^{n}\right)} d w\|f\|_{L^{\infty}\left(\mathbb{R}^{2 n}\right)}
\end{aligned}
$$

for all $z \in \mathbb{C}^{n}$. Thus,

$$
\begin{aligned}
\left\|e^{-\tau L^{\lambda}} f\right\|_{L^{\infty}\left(\mathbb{R}^{2 n}\right)} & \leq a_{\tau} \frac{(4 \pi)^{n}}{|\lambda|^{n}\left[\operatorname{coth}\left(|\lambda|^{n} \tau\right)\right]^{n}}\|f\|_{L^{\infty}\left(\mathbb{R}^{2 n}\right)} \\
& =\frac{1}{\left[\cosh \left(|\lambda|^{n} \tau\right)\right]^{n}}\|f\|_{L^{\infty}\left(\mathbb{R}^{2 n}\right)} .
\end{aligned}
$$

Using the Riesz-Thorin Theorem, we have

$$
\left\|e^{-\tau L^{\lambda}} f\right\|_{L^{\infty}\left(\mathbb{R}^{2 n}\right)} \leq(2 \pi)^{-n / p} \frac{|\lambda|^{n / p}}{\left[\sinh \left(|\lambda|^{n} \tau\right)\right]^{n / p}} \frac{1}{\left[\cosh \left(|\lambda|^{n} \tau\right)\right]^{n / p^{\prime}}}\|f\|_{L^{p}\left(\mathbb{R}^{2 n}\right)}
$$

$8 \quad L^{p}-L^{q}$ Estimates, $1 \leq p \leq 2,2 \leq q \leq \infty$
Using Theorem 6.2 and Theorem 7.1, we have the following theorem.
Theorem 8.1 For $\tau>0$, the heat semigroup $e^{-\tau L^{\lambda}}$ with $|\lambda|=1$, initially defined on $\mathcal{S}\left(\mathbb{R}^{n}\right)$, can be extended to a bounded linear operator from $L^{p}\left(\mathbb{R}^{2 n}\right)$ into $L^{q}\left(\mathbb{R}^{2 n}\right)$, which we again denote by $e^{-\tau L^{\lambda}}$ and

$$
\left\|e^{-\tau L^{\lambda}} f\right\|_{L^{q}\left(\mathbb{R}^{2 n}\right)} \leq \frac{2^{n\left(1-\left(2 / p^{\prime}\right)\right)(2 / q)}}{[\sinh \tau]^{(2 n / q)+(n / p)(1-(2 / q))}[\cosh \tau]^{\left(n / p^{\prime}\right)(1-(2 / q)}}\|f\|_{L^{p}\left(\mathbb{R}^{2 n}\right)}
$$

for all $f \in L^{p}\left(\mathbb{R}^{2 n}\right)$.

9 Global Hypoellipticity in the Schwartz Space

The Green function is now used to prove that the λ-twisted Laplacian L^{λ} with $\lambda \in \mathbb{R}^{m *}$ is globally hypoelliptic.

We need an estimate of the modified Bessel function K_{ν} of order ν, where $\nu>0$.

Lemma 9.1 Let $\nu>0$. Then for every positive number η with $\eta \geq \nu$, there exists a positive constant C_{η} such that

$$
\left|K_{\nu}(x)\right| \leq C_{\eta} x^{-\eta}, \quad x>0
$$

Proof Let η be a positive number such that $\eta \geq \nu$. Using the asymptotic behavior of $K_{\nu}(x)$ for large x in [10], we know that

$$
K_{\nu}(x) \sim \sqrt{\frac{\pi}{2 x}} e^{-x}
$$

as $x \rightarrow \infty$. So, there exists a positive constant C_{η}^{\prime} such that for sufficiently large x, say, $x \geq R^{\prime}$,

$$
K_{\nu}(x) \leq \sqrt{\frac{\pi}{2 x}} e^{-x} \leq C_{\eta}^{\prime} x^{-((1 / 2)+\eta)}<C_{\eta}^{\prime} x^{-\eta}
$$

Using the asymptotic behavior of $K_{\nu}(x)$ for small x in [10], we have

$$
K_{\nu}(x) \sim 2^{\nu-1} \Gamma(\nu) x^{-\nu}
$$

as $x \rightarrow 0+$. Then there exists a positive constant $C_{\eta}^{\prime \prime}$ such that

$$
K_{\nu}(x) \leq C_{\eta}^{\prime \prime} x^{-\eta}
$$

for sufficiently small and positive values of x, say, $x \leq R^{\prime \prime}$. Since $\frac{K_{\nu}(x)}{x^{-\eta}}$ is continuous on $(0, \infty)$, it follows that there exists a positive constant $C_{\eta}^{\prime \prime \prime}$ for which

$$
K_{\nu}(x) \leq C_{\eta}^{\prime \prime \prime} x^{-\eta}, \quad x \in\left[R^{\prime \prime}, R^{\prime}\right]
$$

and the lemma is proved with $C_{\eta}=\max \left(C_{\eta}^{\prime}, C_{\eta}^{\prime \prime}, C_{\eta}^{\prime \prime \prime}\right)$.
We also need the following estimate.
Lemma 9.2 Let $\lambda \in \mathbb{R}^{m *}$. Then for all multi-indices γ on $\mathbb{R}^{2 n}$,

$$
\left|\partial_{z}^{\gamma}\left(e^{-\frac{i}{2} \lambda \cdot[z, w]}\right)\right| \leq\left(\frac{1}{2} m|\lambda|\right)^{|\gamma|}|w|^{|\gamma|}, \quad z, w \in \mathbb{R}^{2 n}
$$

Proof Writing $z=x+i y$ and $w=u+i v$, where x, y, u and v are in \mathbb{R}^{n}, we have

$$
[z, w]_{j}=u \cdot B_{j} y-x \cdot B_{j} v, \quad j=1,2, \ldots, m
$$

Then for $j=1,2, \ldots, m$,

$$
[z, w]_{j}=\sum_{l=1}^{n}\left(B_{j}^{t} u\right)_{l} y_{l}-\sum_{l=1}^{n}\left(B_{j} v\right)_{l} x_{l}
$$

and hence

$$
e^{-\frac{i}{2} \lambda \cdot[z, w]}=e^{-\frac{i}{2} \sum_{j=1}^{m} \lambda_{j} \sum_{l=1}^{n}\left(B_{j}^{t} u\right)_{l} y_{l}} e^{\frac{i}{2} \sum_{j=1}^{m} \lambda_{j} \sum_{l=1}^{n}\left(B_{j} v\right)_{l} x_{l}} .
$$

We also write

$$
\partial_{z}^{\gamma}=\partial_{x}^{\theta} \partial_{y}^{\phi}
$$

where θ and ϕ are multi-indices on \mathbb{R}^{n} with $|\theta+\phi|=|\gamma|$. For $k=1,2, \ldots, n$,

$$
\begin{aligned}
& \partial_{y_{k}}\left(e^{-\frac{i}{2} \lambda \cdot[z, w]}\right) \\
= & e^{-\frac{i}{2} \sum_{j=1}^{m} \lambda_{j} \sum_{l=1}^{n}\left(B_{j}^{t} u\right)_{l} y_{l}} e^{\frac{i}{2} \sum_{j=1}^{m} \lambda_{j} \sum_{l=1}^{n}\left(B_{j} v\right)_{l} x_{l}}\left(-\frac{i}{2} \sum_{j=1}^{m} \lambda_{j}\left(B_{j}^{t} u\right)_{k}\right)
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \partial_{y_{k}}^{\phi_{k}}\left(e^{-\frac{i}{2} \lambda \cdot[z, w]}\right) \\
= & e^{-\frac{i}{2} \sum_{j=1}^{m} \lambda_{j} \sum_{l=1}^{n}\left(B_{j}^{t} u\right)_{l} y_{l}} e^{\frac{i}{2} \sum_{j=1}^{m} \lambda_{j} \sum_{l=1}^{n}\left(B_{j} v\right)_{l} x_{l}}\left(-\frac{i}{2} \sum_{j=1}^{m} \lambda_{j}\left(B_{j}^{t} u\right)_{k}\right)^{\phi_{k}} .
\end{aligned}
$$

So,

$$
\begin{aligned}
& \partial_{y}^{\phi}\left(e^{-\frac{i}{2} \lambda \cdot[z, w]}\right) \\
= & e^{-\frac{i}{2} \sum_{j=1}^{m} \lambda_{j} \sum_{l=1}^{l}\left(B_{j}^{t} u\right)_{l} y_{j}} e^{\frac{i}{2} \sum_{j=1}^{m} \lambda_{j} \sum_{l=1}^{n}\left(B_{j} v\right)_{l x}} \prod_{k=1}^{n}\left(-\frac{i}{2} \sum_{j=1}^{m} \lambda_{j}\left(B_{j}^{t} u\right)_{k}\right)^{\phi_{k}} .
\end{aligned}
$$

Differentiating the preceding equation with respect to x to the order θ, we obtain

$$
\begin{aligned}
& \partial_{z}^{\gamma}\left(e^{-\frac{i}{2} \lambda \cdot[z, w]}\right) \\
= & \partial_{x}^{\theta} \partial_{y}^{\phi}\left(e^{-\frac{i}{2} \lambda \cdot[z, w]}\right) \\
= & e^{-\frac{i}{2} \sum_{j=1}^{m} \lambda_{j} \sum_{l=1}^{n}\left(B_{j}^{t} u\right)_{l} y_{l}} e^{\frac{i}{2} \sum_{j=1}^{m} \lambda_{j} \sum_{l=1}^{n}\left(B_{j} v v_{l} x_{l}\right.} \\
& {\left[\prod_{k=1}^{n}\left(-\frac{i}{2} \sum_{j=1}^{m} \lambda_{j}\left(B_{j}^{t} u\right)_{k}\right)^{\phi_{k}}\right]\left[\prod_{k=1}^{n}\left(\frac{i}{2} \sum_{j=1}^{m} \lambda_{j}\left(B_{j} v\right)_{k}\right)^{\theta_{k}}\right] . }
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left|\partial_{z}^{\gamma}\left(e^{-\frac{i}{2} \lambda \cdot[z, w]}\right)\right| \\
= & \left|\prod_{k=1}^{n}\left(-\frac{i}{2} \sum_{j=1}^{m} \lambda_{j}\left(B_{j}^{t} u\right)_{k}\right)^{\phi_{k}}\right|\left|\prod_{k=1}^{n}\left(\frac{i}{2} \sum_{j=1}^{m} \lambda_{j}\left(B_{j} v\right)_{k}\right)^{\theta_{k}}\right| .
\end{aligned}
$$

If we let $\left\|B_{j}\right\|$ denote the operator norm of B_{j} for $j=1,2, \ldots, m$, then

$$
\begin{aligned}
\left|\prod_{k=1}^{n}\left(-\frac{i}{2} \sum_{j=1}^{m} \lambda_{j}\left(B_{j}^{t} u\right)_{k}\right)^{\phi_{k}}\right| & \leq \prod_{k=1}^{n}\left(\frac{1}{2} \sum_{j=1}^{m}\left|\lambda_{j} \| B_{j}^{t} u\right|\right)^{\phi_{k}} \\
& \leq \prod_{k=1}^{n}\left(\frac{1}{2}|\lambda|\left(\sum_{j=1}^{m}\left\|B_{j}\right\|\right)|u|\right)^{\phi_{k}} \\
& =\left(\frac{1}{2}|\lambda|\right)^{|\phi|}\left(\sum_{j=1}^{m}\left\|B_{j}\right\|\right)^{|\phi|}|u|^{|\phi|} \\
& \leq\left(\frac{1}{2}|\lambda|\right)^{|\phi|}\left(\sum_{j=1}^{m}\left\|B_{j}\right\|\right)^{|\phi|}|w|^{|\phi|} .
\end{aligned}
$$

Since B_{j} is an orthogonal matrix for $j=1,2, \ldots, m$, it follows that

$$
\left\|B_{j}\right\|=1, \quad j=1,2, \ldots, m,
$$

and hence

$$
\left|\prod_{k=1}^{n}\left(-\frac{i}{2} \sum_{j=1}^{m} \lambda_{j}\left(B_{j}^{t} u\right)_{k}\right)^{\phi_{k}}\right| \leq\left(\frac{1}{2} m|\lambda|\right)^{|\phi|}|w|^{|\phi|} .
$$

Similarly,

$$
\left|\prod_{k=1}^{n}\left(\frac{i}{2} \sum_{j=1}^{m} \lambda_{j}\left(B_{j} v\right)_{k}\right)^{\theta_{k}}\right| \leq\left(\frac{1}{2} m|\lambda|\right)^{|\theta|}|w|^{|\theta|} .
$$

Thus,

$$
\left|\partial_{z}^{\gamma}\left(e^{-\frac{i}{2} \lambda \cdot[z, w]}\right)\right| \leq\left(\frac{1}{2} m|\lambda|\right)^{|\gamma|}|w|^{|\theta|}
$$

and the proof is complete.
We can now give the global hypoellipticity of the λ-twisted Laplacian L^{λ} with $\lambda \in \mathbb{R}^{m *}$ in the Schwartz space.

Theorem 9.3 Let $\lambda \in \mathbb{R}^{m *}$. Then the λ-twisted Laplacian L^{λ} is globally hypoelliptic in the sense that

$$
u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{2 n}\right), L^{\lambda} u \in \mathcal{S}\left(\mathbb{R}^{2 n}\right) \Rightarrow u \in \mathcal{S}\left(\mathbb{R}^{2 n}\right)
$$

where $\mathcal{S}^{\prime}\left(\mathbb{R}^{2 n}\right)$ is the space of all tempered distributions on $\mathbb{R}^{2 n}$.
Proof Let $f=L^{\lambda} u$. Then for all $z \in \mathbb{R}^{2 n}$,

$$
\begin{aligned}
u(z) & =\left(\left(L^{\lambda}\right)^{-1} f\right)(z) \\
& =\int_{\mathbb{R}^{2 n}} g^{\lambda}(w) f(z-w) e^{-\frac{i}{2} \lambda \cdot[z, w]} d w
\end{aligned}
$$

where

$$
g^{\lambda}(z)=\frac{(\sqrt{2} \pi)^{-n}}{2 \sqrt{2 \pi}} \frac{\Gamma(n / 2)}{(\sqrt{|\lambda|}|z|)^{n-1}} K_{(n-1) / 2}\left(\frac{1}{4}|\lambda||z|^{2}\right) .
$$

Let β be any multi-index. Then for all $z \in \mathbb{R}^{2 n}$,

$$
\left(\partial^{\beta} u\right)(z)=\int_{\mathbb{R}^{2 n}} g^{\lambda}(w) \partial_{z}^{\beta}\left(f(z-w) e^{-\frac{i}{2} \lambda \cdot[z, w]}\right) d w
$$

To justify the interchange of differentiation and integration, we write for all $z \in \mathbb{R}^{2 n}$,

$$
\int_{\mathbb{R}^{2 n}}\left|g^{\lambda}(w)\right|\left|\partial_{z}^{\beta}\left(f(z-w) e^{-\frac{i}{2} \lambda \cdot[z, w]}\right)\right| d w=I_{1}(z)+I_{2}(z)
$$

where

$$
I_{1}(z)=\int_{|w| \leq 1}\left|g^{\lambda}(w)\right|\left|\partial_{z}^{\beta}\left(f(z-w) e^{-\frac{i}{2} \lambda \cdot[z, w]}\right)\right| d w
$$

and

$$
I_{2}(z)=\int_{\mathbb{R}^{2 n}}\left|g^{\lambda}(w)\right|\left|\partial_{z}^{\beta}\left(f(z-w) e^{-\frac{1}{2} i \lambda \cdot[z, w]}\right)\right| d w
$$

Using the hypothesis that $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, the definition of $[z, w]$, the formula of Leibniz to the effect that

$$
\partial_{z}^{\beta}\left(f(z-w) e^{-\frac{i}{2} \lambda \cdot[z, w]}\right)=\sum_{\gamma \leq \beta}\binom{\beta}{\gamma}\left(\partial^{\beta-\gamma} f\right)(z-w) \partial^{\gamma}\left(e^{-\frac{i}{2} \lambda \cdot[z, w]}\right)
$$

and Lemma 9.2, we get

$$
\sup _{z \in \mathbb{R}^{2 n}}\left|I_{1}(z)\right|<\infty
$$

and

$$
\sup _{z \in \mathbb{R}^{2 n}}\left|I_{2}(z)\right|<\infty
$$

Now, let α and β be arbitrary multi-indices with $\alpha \neq 0$. Then for all $z \in \mathbb{R}^{2 n}$,

$$
\left|z^{\alpha}\left(\partial^{\beta} u\right)(z)\right| \leq 2^{|\alpha|}\left(J_{1}(z)+J_{2}(z)\right)
$$

where

$$
J_{1}(z)=\int_{\mathbb{R}^{2 n}}|w|^{|\alpha|}\left|g^{\lambda}(w)\right|\left|\partial_{z}^{\beta}\left(f(z-w) e^{-\frac{i}{2} \lambda \cdot[z, w]}\right)\right| d w
$$

and

$$
J_{2}(z)=\int_{\mathbb{R}^{2 n}}|z-w|^{|\alpha|}\left|g^{\lambda}(w)\right|\left|\partial_{z}^{\beta}\left(f(z-w) e^{-\frac{i}{2} \lambda \cdot[z, w]}\right)\right| d w
$$

As in the case when $\alpha=0$,

$$
\sup _{z \in \mathbb{R}^{2 n}}\left|J_{1}(z)\right|<\infty
$$

By breaking $\mathbb{R}^{2 n}$ into $|w| \leq 1$ and $|w| \geq 1$, and using the same argument as in the case when $\alpha=0$, we see that

$$
\sup _{z \in \mathbb{R}^{2 n}}\left|J_{2}(z)\right|<\infty
$$

and the proof is complete.

10 Global Hypoellipticity in Gelfand-Shilov Spaces

Let μ and ν be positive real numbers such that $\mu+\nu \geq 1$. Then the GelfandShilov space $S_{\nu}^{\mu}\left(\mathbb{R}^{n}\right)$ is defined to be the set of all functions φ in $C^{\infty}\left(\mathbb{R}^{n}\right)$ for which there exists a positive constant C such that for all multi-indices α and β,

$$
\left|x^{\alpha}\left(\partial^{\beta} \varphi\right)(x)\right| \leq C^{|\alpha|+|\beta|+1}(\alpha!)^{\nu}(\beta!)^{\mu}, \quad x \in \mathbb{R}^{n}
$$

It can be shown that a function φ is in $S_{\nu}^{\mu}\left(\mathbb{R}^{n}\right)$ if and only if there exist positive constants C and ε such that for all muti-indices α,

$$
\left|\left(\partial^{\alpha} \varphi\right)(x)\right| \leq C^{|\alpha|+1}(\alpha!)^{\mu} e^{-\varepsilon|x|^{1 / \nu}}, \quad x \in \mathbb{R}^{n}
$$

This characterization tells us that a function in a Gelfand-Shilov space has exponential decay at infinity. Moreover, a function φ is in the GelfandShilov space $S_{\nu}^{\mu}\left(\mathbb{R}^{n}\right)$ if and only if there exist positive constants C and ε such that

$$
|\varphi(x)| \leq C e^{-\varepsilon|x|^{1 / \nu}}, \quad x \in \mathbb{R}^{n}
$$

and

$$
|\hat{\varphi}(\xi)| \leq C e^{-\varepsilon}|\xi|^{1 / \mu}, \quad \xi \in \mathbb{R}^{n}
$$

It is worth pointing out that the Gelfand-Shilov space $S_{1}^{1}\left(\mathbb{R}^{n}\right)$ is the same as the test space F for Fourier hyperfunctions. In fact, F is the set of all functions φ in $C^{\infty}\left(\mathbb{R}^{n}\right)$ for which there exist positive constants C, ε and δ such that for all multi-indices α,

$$
\left|\left(\partial^{\alpha}\right)(x)\right| \leq C \delta^{|\alpha|} \alpha!e^{-\varepsilon|x|}, \quad x \in \mathbb{R}^{n}
$$

We have the following theorem on the global hypoellipticity of the twisted Laplacian L^{λ} in Gelfand-Shilov spaces.

Theorem 10.1 Let μ and ν be positive real numbers with $\mu+\nu \geq 1$. Then

$$
u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{2 n}\right), L^{\lambda} u \in S_{\nu}^{\mu}\left(\mathbb{R}^{2 n}\right) \Rightarrow u \in S_{\nu}^{\mu}\left(\mathbb{R}^{2 n}\right)
$$

Proof Let $f \in S_{\nu}^{\mu}\left(\mathbb{R}^{2 n}\right)$. Then there exists a positive constant C such that for all multi-indices α and β,

$$
\begin{equation*}
\left|z^{\alpha}\left(\partial^{\beta} f\right)(z)\right| \leq C^{|\alpha|+|\beta|+1}(\alpha!)^{\nu}(\beta!)^{\mu}, \quad z \in \mathbb{C}^{n} \tag{10.1}
\end{equation*}
$$

As in the proof of Theorem 9.3, we need to estimate $I_{1}(z)$. To do this, we use the inequality (10.1), the definition of $[z, w]$ and the Leibniz formula to obtain a positive constant C_{1} such that

$$
I_{1}(z) \leq C_{1}^{|\beta|+1}(\beta!)^{\mu} \int_{|w| \leq 1}\left|g^{\lambda}(w)\right| d w
$$

By Lemma 9.2, we see that there exists a positive constant C_{2} such that

$$
I_{1}(z) \leq C_{2}^{|\beta|+1}(\beta!)^{\mu}, \quad z \in \mathbb{C}^{n}
$$

Similarly, there exists a positive constant C_{4} such that

$$
I_{2}(z) \leq C_{4}^{|\beta|+1}(\beta!)^{\mu}, \quad z \in \mathbb{C}^{n}
$$

Then as in the proof of Theorem 9.3 again, we need to estimate $J_{1}(z)$ and $J_{2}(z)$. Using the same argument as in the case when $\alpha=0$, we obtain a positive constants C_{5} for which

$$
J_{1}(z) \leq C_{5}^{|\alpha|+|\beta|+1}(\alpha!)^{\mu}(\beta!)^{\mu}, \quad z \in \mathbb{C}^{n} .
$$

Using the Leibniz formula and Lemma 9.2, we get a positive constant C_{6} such that

$$
J_{2}(z) \leq C_{6}^{|\alpha|+|\beta|+1}(\alpha!)^{\nu}(\beta!)^{\mu} \int_{\mathbb{C}^{n}}|w|^{|\beta|}\left|g^{\lambda}(w)\right| d w, \quad z \in \mathbb{C} .
$$

By breaking \mathbb{C}^{n} into $|w| \leq 1$ and $|w| \geq 1$ and using Lemma 9.2, the proof is complete.

11 Essential Self-Adjointness

Let $\lambda \in \mathbb{R}^{m *}$. Then using the explicit formula for the λ-twisted Laplacian L^{λ} given in (1.1), it can be checked easily that L^{λ} is a symmetric operator from $L^{2}\left(\mathbb{R}^{2 n}\right)$ into $L^{2}\left(\mathbb{R}^{2 n}\right)$ with dense domain \mathcal{S}. So, L^{λ} is closable and we denote the closure by L_{0}^{λ}.

Proposition 11.1 Let $\lambda \in \mathbb{R}^{m *}$. Then L_{0} is closed and symmetric.
Proof We only need to prove that L_{0}^{λ} is symmetric. Let u and v be functions in the domain $\mathcal{D}\left(L_{0}^{\lambda}\right)$ of L_{0}^{λ}. Then we can find sequences $\left\{\varphi_{l}\right\}_{l=1}^{\infty}$ and $\left\{\psi_{l}\right\}_{l=1}^{\infty}$ in \mathcal{S} such that

$$
\begin{aligned}
\varphi_{l} & \rightarrow u, \\
L^{\lambda} \varphi_{l} & \rightarrow L_{0}^{\lambda} u, \\
\psi_{l} & \rightarrow v
\end{aligned}
$$

and

$$
L^{\lambda} \psi_{l} \rightarrow L_{0}^{\lambda} v
$$

in $L^{2}\left(\mathbb{R}^{2 n}\right)$ as $l \rightarrow \infty$. So, using the symmetry of L^{λ} as a linear operator from $L^{2}\left(\mathbb{R}^{2 n}\right)$ into $L^{2}\left(\mathbb{R}^{2 n}\right)$ with domain \mathcal{S},

$$
\left(L_{0}^{\lambda} u, v\right)=\lim _{l \rightarrow \infty}\left(L^{\lambda} \varphi_{l}, \psi_{l}\right)=\lim _{l \rightarrow \infty}\left(\varphi_{l}, L^{\lambda} \psi\right)=\left(u, L_{0}^{\lambda} v\right) .
$$

Therefore L_{0}^{λ} is symmetric.
For all $\lambda \in \mathbb{R}^{m *}$, let $\Sigma\left(L_{0}^{\lambda}\right)$ be the spectrum of L_{0}^{λ}. Then we have the following theorem.

Theorem 11.2 Let $\lambda \in \mathbb{R}^{m *}$. Then

$$
\Sigma\left(L_{0}^{\lambda}\right)=\left\{|\lambda|^{n}(2|\beta|+n): \beta \in(\mathbb{N} \cup\{0\})^{n}\right\} .
$$

Moreover, for every $\beta \in(\mathbb{N} \cup\{0\})^{n}$, the number $|\lambda|^{n}(2|\beta|+n)$ is an eigenvalue of L_{0}^{λ} with infinite multiplicity.

Proof It follows from Theorem 2.2 that every number $|\lambda|^{n}(2|\beta|+n)$ with $\beta \in \mathbb{N} \cup\{0\}$ is an eigenvalue of L_{0}^{λ} with infinite multiplicity and hence is an element of $\Sigma\left(L_{0}^{\lambda}\right)$. Now, let $\mu \in \mathbb{C}$. Suppose that

$$
\mu \neq|\lambda|^{n}(2|\beta|+n)
$$

for all $\beta \in(\mathbb{N} \cup\{0\})^{n}$. If we can prove that the range $R\left(L_{0}^{\lambda}-\mu I\right)$ of $L_{0}^{\lambda}-\mu I$ is dense in $L^{2}\left(\mathbb{R}^{2 n}\right)$, where I is the identity operator on $L^{2}\left(\mathbb{R}^{2 n}\right)$, and there exists a positive constant C such that

$$
\left\|\left(L_{0}^{\lambda}-\mu I\right) u\right\|_{L^{2}\left(\mathbb{R}^{2 n}\right)} \geq C\|u\|_{L^{2}\left(\mathbb{R}^{2 n}\right)}, \quad u \in \mathcal{D}\left(L_{0}^{\lambda}\right)
$$

then μ lies in the resolvent set $\rho\left(L_{0}^{\lambda}\right)$ and the proof is then complete. Let M be the subspace of $L^{2}\left(\mathbb{R}^{2 n}\right)$ consisting of all finite linear combinations of elements in $\left\{e_{\alpha, \beta}^{\lambda}: \alpha, \beta \in(\mathbb{N} \cup\{0\})^{n}\right\}$. Then by Theorem 2.1, M is dense in $L^{2}\left(\mathbb{R}^{2 n}\right)$. Let $f \in M$. Then we can write

$$
f=\sum_{|\alpha| \leq N_{1}} \sum_{|\beta| \leq N_{2}} a_{\alpha, \beta} e_{\alpha, \beta}^{\lambda},
$$

where N_{1} and N_{2} are positive integers and

$$
a_{\alpha, \beta} \in \mathbb{C}, \quad|\alpha| \leq N_{1},|\beta| \leq N_{2} .
$$

Let

$$
u=\sum_{|\alpha| \leq N_{1},|\beta| \leq N_{2}} \frac{a_{\alpha, \beta}}{|\lambda|^{n}(2|\beta|+n)-\mu} e_{\alpha, \beta}^{\lambda} .
$$

Let $C_{\mu}=\left.\inf _{\beta \in(\mathbb{N} \cup\{0\})^{n}}| | \lambda\right|^{n}(2|\beta|+n)-\mu \mid$. Since

$$
\mu \neq|\lambda|^{n}(2|\beta|+n)
$$

for all $\beta \in(\mathbb{N} \cup\{0\})^{n}$, it follows that $C_{\mu}>0$. Therefore $u \in \mathcal{S}$. Furthermore,

$$
\begin{aligned}
\left(L_{0}^{\lambda}-\mu I\right) u & =\left(L^{\lambda}-\mu I\right) u=\sum_{|\alpha| \leq N_{1}} \sum_{|\beta| \leq N_{2}} \frac{a_{\alpha, \beta}}{|\lambda|^{n}(2|\beta|+n)-\mu} L^{\lambda} e_{\alpha, \beta}^{\lambda} \\
& =\sum_{|\alpha| \leq N_{1}} \sum_{|\beta| \leq N_{2}} a_{\alpha, \beta} e_{\alpha, \beta}^{\lambda}=f .
\end{aligned}
$$

Therefore $f \in R\left(L_{0}^{\lambda}-\mu I\right)$. So, $M \subseteq R\left(L_{0}^{\lambda}-\mu I\right)$. This proves that $R\left(L_{0}^{\lambda}-\mu I\right)$ is dense in $L^{2}\left(\mathbb{R}^{2 n}\right)$. Let $u \in \mathcal{D}\left(L_{0}^{\lambda}\right)$. Then using the symmetry of L^{λ}, Theorem 2.1 and Parseval's identity,

$$
\begin{aligned}
\left.\|\left(L_{0}^{\lambda}-\mu I\right) u\right) \|_{L^{2}\left(\mathbb{R}^{2 n}\right)}^{2} & =\left\|\sum_{\alpha} \sum_{\beta}\left(\left(L_{0}^{\lambda}-\mu I\right) u, e_{\alpha, \beta}^{\lambda}\right) e_{\alpha, \beta}^{\lambda}\right\|_{L^{2}\left(\mathbb{R}^{2 n}\right)}^{2} \\
& =\left\|\sum_{\alpha} \sum_{\beta}\left(u,\left(\left(L_{0}^{\lambda}\right)^{*}-\bar{\mu} I\right) e_{\alpha, \beta}^{\lambda}\right) e_{\alpha, \beta}^{\lambda}\right\|_{L^{2}\left(\mathbb{R}^{2 n}\right)}^{2} \\
& =\left\|\sum_{\alpha} \sum_{\beta}\left(u,\left(L^{\lambda}-\bar{\mu} I\right) e_{\alpha, \beta}^{\lambda}\right) e_{\alpha, \beta}^{\lambda}\right\|_{L^{2}\left(\mathbb{R}^{2 n}\right)}^{2} \\
& =\| \sum_{\alpha} \sum_{\beta}\left(u,\left(|\lambda|^{n}(2|\beta|+n)-\bar{\mu}\right) e_{\alpha, \beta}^{\lambda} \|_{L^{2}\left(\mathbb{R}^{2 n}\right)}^{2}\right. \\
& =\left\|\sum_{\alpha} \sum_{\beta}\left(|\lambda|^{n}(2|\beta|+n)-\mu\right)\left(u, e_{\alpha, \beta}\right) e_{\alpha, \beta}^{\lambda}\right\|^{2} \\
& =\sum_{\alpha} \sum_{\beta} \|\left.\lambda\right|^{n}(2|\beta|+n)-\left.\mu\right|^{2}\left|\left(u, e_{\alpha, \beta}^{\lambda}\right)\right|^{2} .
\end{aligned}
$$

Thus,

$$
\left\|\left(L_{0}^{\lambda}-\mu I\right) u\right\|_{L^{2}\left(\mathbb{R}^{2 n}\right)} \geq C_{\mu}\|u\|_{L^{2}\left(\mathbb{R}^{2 n}\right)}, \quad u \in \mathcal{D}\left(L_{0}^{\lambda}\right)
$$

By Theorem X. 1 on page 136 of [11] and the preceding theorem, we see that for all $\lambda \in \mathbb{R}^{m *}, L_{0}^{\lambda}$ is self-adjoint and hence the λ-twisted Laplacian L_{0}^{λ} given by (1.1) from $L^{2}\left(\mathbb{R}^{2 n}\right)$ into $L^{2}\left(\mathbb{R}^{2 n}\right)$ with dense domain \mathcal{S} is essentially self-adjoint.

12 Sobolev Spaces

Let $s \in \mathbb{R}$. Then for all $\lambda \in \mathbb{R}^{m *}$, we define the L^{2}-Sobolev space $H^{s, 2, \lambda}$ of order s by

$$
H^{s, 2, \lambda}=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{2 n}\right): \sum_{\alpha} \sum_{\beta}|\lambda|^{2 n s}(2|\beta|+n)^{2 s}\left|\left(u, e_{\alpha, \beta}^{\lambda}\right)\right|^{2}<\infty\right\} .
$$

It is easy to see that $H^{s, 2, \lambda}$ is an inner product space with inner product $(,)_{s, 2, \lambda}$ and norm $\left\|\|_{s, 2, \lambda}\right.$ given by

$$
(u, v)_{s, 2, \lambda}=\sum_{\alpha} \sum_{\beta}|\lambda|^{2 n s}(2|\beta|+n)^{2 s}\left(u, e_{\alpha, \beta}^{\lambda}\right)\left(e_{\alpha, \beta}^{\lambda}, v\right)
$$

and

$$
\|u\|_{s, 2, \lambda}^{2}=\sum_{\alpha} \sum_{\beta}|\lambda|^{2 n s}(2|\beta|+n)^{2 s}\left|\left(u, e_{\alpha, \beta}^{\lambda}\right)\right|^{2}
$$

for all u and v in $H^{s, 2, \lambda}$.
Theorem $12.1 H^{s, 2, \lambda}$ is a Hilbert space with respect to the inner product $(,)_{s, 2, \lambda}$.

Proof If $s \geq 0$, then the domain $\mathcal{D}\left(\left(L_{0}^{\lambda}\right)^{s}\right)$ of the self-adjoint operator $\left(L_{0}^{\lambda}\right)^{s}$ from $L^{2}\left(\mathbb{R}^{2 n}\right)$ into $L^{2}\left(\mathbb{R}^{2 n}\right)$ is a Banach space with respect to the norm $\left\|\|_{s}\right.$ given by

$$
|u|_{s}^{2}=\left\|\left(L_{0}^{\lambda}\right)^{s} u\right\|_{L^{2}\left(\mathbb{R}^{2 n}\right)}^{2}+\|u\|_{L^{2}\left(\mathbb{R}^{2 n}\right)}^{2}, \quad u \in \mathcal{D}\left(\left(L_{0}^{\lambda}\right)^{s}\right) .
$$

Obviously,

$$
\left\|\left(L_{0}^{\lambda}\right)^{s} u\right\|_{L^{2}\left(\mathbb{R}^{2 n}\right)}^{2}=\sum_{\alpha} \sum_{\beta}|\lambda|^{2 n s}(2|\beta|+n)^{2 s}\left|\left(u, e_{\alpha, \beta}^{\lambda}\right)\right|^{2}=\|u\|_{s, 2, \lambda}^{2} .
$$

So, $\left\|\|_{s, 2, \lambda}\right.$ is a norm in $H^{s, 2, \lambda}$ and hence $H^{s, 2, \lambda}$ is complete with respect to $\left\|\|_{s, 2, \lambda}\right.$. Let $s<0$. Then $H^{s, 2, \lambda}$ is the dual space of $H^{-s, 2, \lambda}$ and is hence complete.

From the proof of the preceding theorem, we can have a characterization of the domain $\mathcal{D}\left(L_{0}^{\lambda}\right)$ of the closure of the λ-twisted Laplacian.

Theorem 12.2 Let $\lambda \in \mathbb{R}^{m *}$. Then $\mathcal{D}\left(L_{0}^{\lambda}\right)=H^{1,2, \lambda}$.
The following result can be considered to be the analog for the λ twisted Laplacian of the Agmon-Douglis-Nirenberg inequalities for elliptic boundary-value problems in [1] and globally elliptic pseudo-differential operators on \mathbb{R}^{n} in [16].

Theorem 12.3 Let $\lambda \in \mathbb{R}^{m *}$. Then for all $s \in \mathbb{R}$,

$$
\|u\|_{s+1,2, \lambda}=\left\|L_{0}^{\lambda} u\right\|_{s, 2, \lambda}, \quad u \in H^{s+1,2, \lambda}
$$

Proof Let $u \in H^{s+1,2, \lambda}$. Then

$$
\begin{aligned}
\left\|L_{0}^{\lambda} u\right\|_{s, 2, \lambda}^{2} & =\sum_{\alpha} \sum_{\beta}|\lambda|^{2 n s}(2|\beta|+n)^{2 s}\left|\left(L_{0}^{\lambda} u, e_{\alpha, \beta}^{\lambda}\right)\right|^{2} \\
& \left.=\sum_{\alpha} \sum_{\beta}|\lambda|^{2 n s}(2|\beta|+n)^{2 s}|\lambda|^{2 n}(2|\beta|+n)^{2}\right)^{2}\left|\left(u, e_{\alpha, \beta}^{\lambda}\right)\right|^{2} \\
& =\sum_{\alpha} \sum_{\beta}|\lambda|^{2 n(s+1)}(2|\beta|+n)^{2(s+1)}\left|\left(u, e_{\alpha, \beta}\right)\right|^{2} \\
& =\|u\|_{s+1,2}^{2} .
\end{aligned}
$$

We give as a corollary a result on the global regularity of the λ-twisted Laplacian on Sobolev spaces.

Theorem 12.4 Let $\lambda \in \mathbb{R}^{m *}$. Then for all $s \in \mathbb{R}$,

$$
u \in \mathcal{S}^{\prime}, L^{\lambda} u \in H^{s, 2, \lambda} \Rightarrow u \in H^{s+1,2, \lambda} .
$$

Remark 12.5 There is a loss of one derivative globally on $\mathbb{R}^{2 n}$ because the operator L_{0}^{λ} with $\lambda \in \mathbb{R}^{m *}$ is not globally elliptic on $\mathbb{R}^{2 n}$ as defined in [16], notwithstanding its ellipticity at every point in $\mathbb{R}^{2 n}$.

References

[1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math. 12 (1959), 623-727.
[2] P. Boggiatto, E. Buzano and L. Rodino, Global Hypoellipticity and Spectral Theory, Akademie Verlag, Berlin, 1996.
[3] E. Buzano and A. Oliaro, Global regularity of second order twisted differential operators, J. Differential Equations, 268 (2020), 7364-7416.
[4] A. Dasgupta and M. W. Wong, Essential self-adjointness and global hypoellipticity of the twisted Laplacian, Rend. Sem. Mat. Univ. Pol. Torino 66 (2008), 75-85.
[5] A. Dasgupta and M. W. Wong, Weyl transforms for H-type groups, J. Pseudo-Differ. Oper. Appl. 6 (2015), 11-19.
[6] A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), 147-153.
[7] A. Korányi, Geometric properties of Heisenberg-type groups, Adv. Math. 56 (1986), 28-38.
[8] S. Molahajloo, Pseudo-differential operators on nonisotropic Heisenberg Groups with multi-dimensional centers, in Pseudo-Differential Operators: Groups, Geometry and Applications, Trends in Mathematics, Birkhäuser, 2017, 15-35.
[9] S. Molahajloo and M. W. Wong, Heat kernels and Green functions of sub-Laplacians on Heisenberg groups with multi-dimensional center, Math. Model. Nat. Phenom. 13 (2018), 38.
[10] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, (eds), NIST Handbook of Mathematical Functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC, Cambridge University Press, 2010. (Web Version: the NIST Digital Library of Mathematical Functions (DLMF).)
[11] M. Reed and B. Simon, Fourier Analysis, Self-Adjointness, Academic Press, 1975.
[12] M. W. Wong, Weyl Transforms, Springer, 1998.
[13] M. W. Wong, Weyl transforms, the heat kernel and Green function of a degenerate elliptic operator, Ann. Global Anal. Geom. 28 (2005), 271-283.
[14] M. W. Wong, The heat equation for the Hermite operator on the Heisenberg group, Hokkaido Math. J. 34 (2005), 393-404.
[15] M. W. Wong, Partial Differential Equations, CRC Press, 2014.
[16] M. W. Wong, An Introduction to Pseudo-Differential Operators, Third Edition, World Scientific, 2014.

[^0]: ${ }^{1}$ This research has been supported by the Natural Sciences and Engineering Research Council of Canada under Discovery Grant 0008562.

