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1 Introduction

The aim of this paper is to look at some aspects of analysis and partial dif-
ferential equations on a class of nonisotropic Heisenberg groups with multi-
dimensional center. We begin with a description of the Laplacians on the
nonisotropic Heisenberg groups with multi-dimensional center.

1This research has been supported by the Natural Sciences and Engineering Research
Council of Canada under Discovery Grant 0008562.
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Let B1, B2, . . . , Bm be n× n orthogonal matrices with real entries such
that

B−1j Bk = −B−1k Bj

for all j, k = 1, 2, . . . ,m with j 6= k. Then we define the nonisotropic Heisen-
berg group G with multi-dimensional center to be the set Rn × Rn × Rm

equipped with the binary operation · given by

(z, t) · (w, s) =

(
z + w, t+ s+

1

2
[z, w]

)
for all (z, t) and (w, s) in Rn × Rn × Rm, where z = (x, y) ∈ Rn × Rn,
w = (u, v) ∈ Rn × Rn, t, s ∈ Rm and [z, w] ∈ Rm is given by

[z, w]j = u ·Bjy − x ·Bjv, j = 1, 2, . . . ,m.

The center Z of the nonisotropic Heisenberg group G with multi-dimensional
center is m-dimensional and is given by

Z = {(0, 0, t) : t ∈ Rm}.

The following proposition on the dimension of a nonisotropic Heisenberg
group and the dimension of its center can be found in [8].

Proposition 1.1 Let Rn × Rn × Rm be the underlying manifold of a non-
isotropic Heisenberg group. Then

m2 ≤ n.

Nonisotropic Heisenberg groups with multi-dimensional center are spe-
cial cases of H-type groups in [5, 6, 7]. If m = 1 and B1 = −In, where In
is the n × n identity matrix, then we get back the ordinary n-dimensional
Heisenberg group Hn. In the book [15], for the sake of simplifying the no-
tation and making the presentation transparent, we have chosen to study
in detail the one-dimensional Heisenberg group H1.

Let g be the Lie algebra of all left-invariant vector fields on G. For
j = 1, 2, . . . , n, let γ1,j : R→ G and γ2,j : R→ G be curves in G given by

γ1,j(s) = (sej, 0, 0)

and
γ2,j(s) = (0, sej, 0)
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for all s ∈ R, where ej is the standard unit vector in Rn with 1 in the jth

position. For k = 1, 2, . . . ,m, let γ3,k : R→ G be the curve in G given by

γ3,k(s) = (0, 0, sek)

for all s ∈ R, where ek is the standard unit vector in Rm with 1 in the kth

position. For j = 1, 2, . . . , n, we define the left-invariant vector fields Xj

and Yj by

(Xjf)(x, y, t)

=
d

ds
f((x, y, t) · γ1,j(s))

∣∣∣∣
s=0

=
d

ds
f

(
x+ sej, y,

(
t1 +

1

2
(B1y, sej), . . . , tm +

1

2
(Bmy, sej)

))∣∣∣∣
s=0

=
∂f

∂xj
(x, y, t) +

1

2

m∑
k=1

(Bky, ej)
∂f

∂tk
(x, y, t)

and

(Yjf)(x, y, t)

=
d

ds
f((x, y, t) · γ2,j(s))

∣∣∣∣
s=0

=
d

ds
f

(
x, y + sej,

(
t1 −

1

2
(x, sB1ej), . . . , tm −

1

2
(x, sBmej)

))∣∣∣∣
s=0

=
∂f

∂yj
(x, y, t)− 1

2

m∑
k=1

(x,Bkej)
∂f

∂tk
(x, y, t)

for all (x, y, t) ∈ G and all f ∈ C∞(G). For k = 1, 2, . . . ,m, we define the
vector field Tk by

(Tkf)(x, y, t)

=
d

ds
f((x, y, t) · γ3,k(s))

∣∣∣∣
s=0

=
d

ds
f(x, y, t+ sek)

∣∣∣∣
s=0

=
∂f

∂tk
(x, y, t)
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for all (x, y, t) ∈ G and all f ∈ C∞(G). We can easily check that

[Xj, Yl] = −
m∑
k=1

(Bk)jlTk, j, l = 1, 2, . . . , n,

and the other commutators are zero.

Theorem 1.2 The Lie algebra g of G is generated by

{Xj, Yl, [Xj, Yl] : j, l = 1, 2, . . . , n}.

The sub-Laplacian L on G is defined by

L = −
n∑
j=1

(X2
j + Y 2

j ).

Explicitly,

L = −∆x −∆y −
1

4
(|x|2 + |y|2)∆t

+
n∑
j=1

m∑
k=1

[
−(Bky, ej)

∂

∂xj
+ (x,Bkej)

∂

∂yj

]
∂

∂tk
.

Let Rm∗ = Rm \ {0}. Then by taking the inverse Fourier transform of
the sub-Laplacian with respect to t, we get parametrized twisted Laplacians
Lλ, λ ∈ Rm∗, given by

Lλ = −∆x−∆y+
1

4
(|x|2+|y|2)|λ|2−i

n∑
j=1

{
−(Bλy, ej)

∂

∂xj
+ (x,Bλej)

∂

∂yj

}
,

(1.1)
where

Bλ =
m∑
j=1

λjBj.

To recapitulate, the first four sections in this paper provide a recall of
the nonisotropic Heisenberg group with multi-dimensional center, a family
of twisted Laplacians on it parametrized by λ ∈ Rm∗ in the center, the heat
kernels and the Green functions of these twisted Laplacians. We first give
the Lp − Lq estimates of the heat semigroup, also known as the strongly
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continuous one-parameter semigroup, generated by Lλ for all λ ∈ Rm∗. We
also prove that for all λ ∈ Rm∗, Lλ is globally hypoelliptic in the Schwartz
space S and in the Gelfand–Shilov spaces Sµν , where µ and ν are positive
numbers with µ+ ν ≥ 1. Global hypoellipticity of differential operators can
be found in [2]. In [3], global hypoellipticity, renamed global regularity, of
second order twisted differential operators is further developed. Analogs of
these resuts for the ordinary Heisenberg group with one-dimensional center
can be found in, respectively, [4] and [13]. In addition, we construct a
scale of Sobolev spaces to measure the global regularity of Lλ. The results
on the heat semigroup are given in Sections 5-8. The results on global
hypoellipticity are given in Sections 9 and 10. Essential self-adjointness
and global regularity are given in, respectively, Sections 11 and 12.

2 Spectral Analysis of λ-Twisted Laplacians

For k = 0, 1, 2, . . . , the Hermite function ek of order k on R is defined by

ek(x) =
1

(2kk!
√
π)1/2

e−x
2/2Hk(x), x ∈ R,

where Hk is the Hermite polynomial of degree k given by

Hk(x) = (−1)kex
2

(
d

dx

)k
(e−x

2

), x ∈ R.

For every multi-index α = (α1, α2, . . . , αn), we define the function eα on Rn

by
eα = eα1 ⊗ eα2 ⊗ · · · ⊗ eαn .

For all λ ∈ Rm∗ and all multi-indices α and β in (N ∪ {0})n, we define the
special Hermite function eλα,β on Rn × Rn by

eλα,β(q, p) = |λ|n/2V λ(eα, eβ)

(
q√
|λ|
,
√
|λ|p

)
, q, p ∈ Rn,

where

V λ(f, g)(q, p) = (2π)−n/2
∫
Rn
ei(Bλ

tq)·yf
(
y +

p

2

)
g
(
y − p

2

)
dy, q, p ∈ Rn,

(2.1)
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for all f and g in S. The matrix Bt
λ is the transpose of Bλ. In fact, eλα,β is

given by
eλα,β(q, p) = V λ(eλα, e

λ
β)(q,

√
|λ|p), q, p ∈ Rn,

where
eλα(x) = |λ|n/4eα(

√
|λ|x), x ∈ Rn.

Theorem 2.1 {eλα,β : α, β ∈ (N ∪ {0})n} is an orthonormal basis for
L2(Rn × Rn).

The following theorem gives the spectral analysis of the λ-twisted Lapla-
cian for all λ ∈ Rm∗.

Theorem 2.2 Let λ ∈ Rm∗. Then for all multi-indices α and β in (N ∪
{0})n,

Lλeλα,β = |λ|n(2|β|+ n)eλα,β.

All definitions and results in this section can be found in [9].

3 λ-Weyl Transforms

We have defined the λ-Fourier–Wigner transform V λ(f, g) of f and g in S
by (2.1). In fact,

V λ(f, g)(q, p) = (2π)−n/2
∫
Rn
ei(B

t
λq)·xf

(
x+

p

2

)
g
(
x− p

2

)
dx, q, p ∈ Rn.

It is easy to see that the λ-Fourier–Wigner transform is related to the ordi-
nary Fourier–Wigner transform by

V λ(f, g)(q, p) = V (f, g)(Bt
λq, p), q, p ∈ Rn.

Note that
V λ(f, g)(q,−p) = V λ(g, f)(q, p), q, p ∈ Rn.

Now, we define the λ-Wigner transform W λ(f, g) of f and g in L2(Rn) to
be the Fourier transform of V λ(f, g). In fact, the λ-Wigner transform has
the form

W λ (f, g) (x, ξ) = |λ|−n(2π)−n/2
∫
Rn
e−iξ·pf

(
Bt
λx

|λ|2
+
p

2

)
g

(
Bt
λx

|λ|2
− p

2

)
dp

(3.1)
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for all x and ξ in Rn, and and it is related to the ordinary Wigner transform
by

W λ(f, g)(x, ξ) = |λ|−nW (f, g)

(
Bt
λx

|λ|2
, ξ

)
for all x, ξ in Rn. Moreover,

W λ(f, g) = W λ(g, f), f, g ∈ L2(Rn).

Let σ ∈ S(Rn × Rn) and f ∈ S(Rn). Then we define the λ-Weyl trans-
form W λ

σ f of f corresponding to the symbol σ by(
W λ
σ f, g

)
L2(Rn) = (2π)−n/2

∫
Rn

∫
Rn
σ(x, ξ)W λ(f, g)(x, ξ) dx dξ, (3.2)

for all g ∈ S(Rn). Therefore using Parseval’s identity, we have(
W λ
σ f, g

)
L2(Rn) = (2π)−n/2

∫
Rn

∫
Rn
σ̂(q, p)V λ(f, g)(q, p) dq dp.

Hence, formally, we can write(
W λ
σ f
)

(x) = (2π)−n
∫
Rn

∫
Rn
σ̂(q, p) (πλ(q, p)f) (x) dq dp, x ∈ Rn.

Proposition 3.1 Let σ ∈ S(Rn × Rn). Then the λ-Weyl transform W λ
σ is

given by
W λ
σ = Wσλ ,

where Wσλ is the ordinary Weyl transform corresponding to the symbol σλ
given by

σλ(x, ξ) = σ(Bλx, ξ), x, ξ ∈ Rn.

Let F and G be functions in L2(R2n). Then the λ-twisted convolution
F ∗λ G of F and G is the function on R2n defined by

(F ∗λ G)(z) =

∫
R2n

F (z − w)G(w)e
i
2
λ·[z,w] dw, z ∈ R2n, (3.3)

provided that the integral exists.

Theorem 3.2 Let σ and τ be in L2(R2n). Then

W λ
σW

λ
τ = W λ

ω ,

where ω ∈ L2(R2n) and ω̂ = (2π)−n(σ̂ ∗λ τ̂).
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We have the following Moyal identity for the λ-Wigner transform and
the λ-Fourier–Wigner transform.

Proposition 3.3 For all f1, f2, g1, g2 in L2(Rn),(
W λ(f1, g1),W

λ(f2, g2)
)

= |λ|−n (f1, f2) (g1, g2)

and (
V λ(f1, g1), V

λ(f2, g2)
)

= |λ|−n (f1, f2) (g1, g2).

4 Heat Kernels and Green Functions of

λ-Twisted Laplacians

We recall in this section the heat kernel and the Green function of the λ-
twisted Laplacian Lλ, λ ∈ Rm∗, given in [9]. We first give the heat kernel of
the λ-twisted Laplacian Lλ, which is the kernel of the integral operator e−τL

λ

for τ > 0. The twisted convolution defined in (3.3) is the key ingredient in
the following theorem.

Theorem 4.1 Let λ ∈ Rm∗. Then for all f ∈ L2(Rn × Rn) and all τ > 0,

e−τL
λ

f = kλτ ∗−λ f,

where

kλτ (z) = (2π)−n
|λ|n

[2 sinh (|λ|nτ)]n
e−

1
4
|λ| |z|2coth (|λ|nτ)

for all z ∈ R2n.

As a corollary, the heat kernel κλτ of the λ-twisted Laplacian Lλ for
λ ∈ Rm∗ is given by

κλτ (z, w) = kλτ (z − w)e−
i
2
λ·[z,w]

= (2π)−n
|λ|n

[2 sinh (|λ|nτ)]n
e−

1
4
|λ| |z−w|2coth (τ |λ|n)e−

i
2
λ·[z,w] (4.1)

for all z and w in R2n.
The Green function Gλ of Lλ is the kernel of the inverse (Lλ)−1. The

Green function Gλ is related to the heat kernel κλτ of Lλ by

Gλ(z, w) =

∫ ∞
0

κλτ (z, w) dτ, z, w ∈ R2n.
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Let

gλ(z) =

∫ ∞
0

kλτ (z) dτ, z ∈ R2n.

Then the Green function Gλ of Lλ is given by

Gλ(z, w) = e−
i
2
λ·[z,w]gλ(z − w)

for all z and w in R2n. An explicit formula for gλ is given in the following
theorem.

Theorem 4.2 For all z ∈ R2n,

gλ(z) =
(
√

2π)−n

2
√

2π

Γ(n/2)

(
√
|λ||z|)n−1

K(n−1)/2

(
1

4
|λ| |z|2

)
,

where K(n−1)/2 is the modified Bessel function of order (n− 1)/2 given by

K(n−1)/2(x) =

∫ ∞
0

e−x cosh δcosh((n− 1)δ/2) dδ, x > 0.

5 Heat Semigroups Generated by

λ-Twisted Laplacians on G
A formula for the heat semigroup e−τL

λ
, τ > 0, on G is given in the following

theorem. It is an analog of the formula for the heat semigroup generated
by the twisted Laplacian in the one-dimensional Heisenberg group given in
[14].

Theorem 5.1 Let f ∈ L2(R2n). Then for all λ ∈ Rm∗ with |λ| = 1 and
τ > 0,

e−τL
λ

f = (2π)n/2
∑
β

e−τ(2|β|+n)V λ(W λ
f̂
eβ, eβ).

Proof Let f ∈ S. Then for τ > 0, we have

e−τL
λ

f =
∑
β

∑
α

e−τ |λ|
n(2|β|+n)(f, eλα,β)eλα,β, (5.1)
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where the series is convergent in L2(Rn). Now, using the λ-Wigner transform
and the Plancherel theorem,

(f, eλα,β) =

∫
Rn

∫
R2n

f(z)V λ(eα, eβ)(z) dz

=

∫
R2n

f̂(ζ)V λ(eα, eβ)∧(ζ) dζ

=

∫
R2n

f̂(ζ)W λ(eα, eβ)(ζ) dζ

= (2π)n/2(W λ
f̂
eβ, eα). (5.2)

Similarly, for all g ∈ S(R2n), we have

(eλα,β, g) = (g, eλα,β) = (2π)n/2(W λ
ĝ eβ, eα) = (2π)n/2(eα,W

λ
ĝ eβ). (5.3)

So, by (5.1), (5.2) and (5.3),

(e−τL
λ

f, g) = (2π)n
∑
β

∑
α

e−τ(2|β|+n)(W λ
f̂
eβ, eα)(eα,W

λ
ĝ eβ)

= (2π)n
∑
β

e−τ(2|β|+n)
∑
α

(W λ
f̂
eβ, eα)(eα,W

λ
ĝ eβ)

= (2π)n
∑
β

e−τ(2|β|+n)(W λ
f̂
eβ,W

λ
ĝ eβ) (5.4)

for all τ > 0. Using the definition of the λ-Weyl transform and Plancherel’s
theorem,

(W λ
f̂
eβ,W

λ
ĝ eβ) = (2π)−n/2

∫
R2n

ĝ(z)W λ(eβ,W λ
f̂
eβ)(z) dz

= (2π)−n/2
∫
R2n

W λ(W λ
f̂
eβ, eβ)(z)ĝ(z) dz

= (2π)−n/2
∫
R2n

V λ(W λ
f̂
eβ, eβ)(z)g(z) dz (5.5)

for all multi-indices β. By (5.4) and (5.5),

(e−τL
λ

f, g) = (2π)n/2
∑
β

e−τ(2|β|+n)(V λ(W λ
f̂
eβ, eβ), g)

= (2π)n/2

(∑
β

e−τ(2|β|+n)V λ(W λ
f̂
eβ, eβ), g

)
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for all f and g in S(Rn) and all τ > 0. Thus,

e−τL
λ

f = (2π)n/2
∑
β

e−τ(2|β|+n)V λ(W λ
f̂
eβ, eβ)

for all f ∈ S(Rn) and all τ > 0. �

6 An Lp–L2 Estimate

We begin with the following improvement of Theorem 11.1 in [13].

Theorem 6.1 Let σ ∈ Lp(R2n), 1 ≤ p ≤ 2. Then for λ ∈ Rm∗, the λ-Weyl
transform W λ

σ̂ , originally defined on S(Rn), can be extended to a unique
bounded linear operator on L2(Rn). Moreover,

‖W λ
σ̂ ‖∗ ≤ (2π)−n/2(2/|λ|)n(1−(2/p′))‖σ‖Lp(R2n),

where ‖ ‖∗ is the norm in the C∗-algebra of all bounded linear operators on
L2(Rn).

Proof Let σ ∈ L2(R2n). Then for all f and g in L2(Rn), we get by (3.2),
the Schwarz inequality and the Plancherel theorem,

|(W λ
σ̂ f, g)L2(Rn)| ≤ (2π)−n/2‖σ̂‖L2(R2n)‖W λ(f, g)‖L2(R2n)

= (2π)−n/2‖σ‖L2(R2n)‖W λ(f, g)‖L2(R2n).

By Moyal’s identity in Proposition 3.3,

‖W λ(f, g)‖L2(R2n) = ‖f‖L2(Rn)‖g‖L2(Rn).

Therefore

|(W λ
σ̂ f, g)L2(Rn)| ≤ (2π)−n/2‖σ‖L2(R2n)‖f‖L2(Rn)‖g‖L2(Rn), f, g ∈ L2(Rn).

So,
‖W λ

σ̂ f‖L2(Rn) ≤ (2π)−n/2‖σ‖L2(R2n)‖f‖L2(Rn), f ∈ L2(Rn).

Now, let σ ∈ L1(R2n). Then for all f and g in L2(Rn), we get by (3.2) and
Hölder’s inequality,

|(W λ
σ̂ f, g)L2(R2n)| ≤ (2π)−n/2‖σ̂‖L1(R2n)‖V λ(f, g)‖L∞(R2n).
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By (3.1) and the Schwarz inequality,

‖W λ(f, g)‖L∞(R2n)

≤ (2π)−n/2|λ|−n
[∫

Rn

∣∣∣∣f (Bt
λx

|λ|2
+
p

2

)∣∣∣∣2 dp
] 1

2
[∫

Rn

∣∣∣∣g(Bt
λx

|λ|2
− p

2

)∣∣∣∣2 dp
] 1

2

= (2π)−n/2|λ|−n2n‖σ‖L1(R2n)‖f‖L2(Rn)‖g‖L2(Rn).

Let σ ∈ Lp(R2n). Then by the Riesz–Thorin theorem, we get for all f in
L2(Rn),

‖W λ
σ̂ f‖L2(Rn)

≤ [(2π)−n/2]2/p
′
[(2π)−n/22n|λ|−n]1−(2/p

′)‖σ‖Lp(R2n)‖f‖L2(Rn)

= (2π)−n/2(2/|λ|)n(1−(2/p′))‖σ‖Lp(R2n)‖f‖L2(Rn). (6.1)

By (6.1), the proof is complete. �

Theorem 6.2 For τ > 0, the heat semigroup e−τL
λ

with |λ| = 1, initially
defined on S(R2n), can be extended to a unique bounded linear operator from
Lp(R2n) into L2(R2n), which we again denote by e−τL

λ
, and

‖e−τLλf‖L2(R2n) ≤ 2n(1−(2/p
′)) 1

[2 sinh τ ]n
‖f‖Lp(R2n)

for all f ∈ Lp(R2n), 1 ≤ p ≤ 2.

Proof By Theorem 5.1, Minkowski’s inequality and the Moyal identity for
the λ-Fourier–Wigner transform, we get for all f ∈ S(R2n),

‖e−τLλf‖L2(R2n) ≤ (2π)n/2
∑
β

e−τ(2|β|+n)‖V λ(W λ
f̂
eβ, eβ))‖L2(R2n)

= (2π)n/2
∑
β

e−τ(2|β|+n)‖W λ
f̂
eβ‖L2(Rn)‖eβ‖L2(Rn)

= (2π)n/2|λ|n
∑
β

e−τ |λ|
n(2|β|+n)‖W λ

f̂
eβ‖L2(Rn) (6.2)

for τ > 0. So, by (6.2) and Theorem 6.1, we get for τ > 0,

‖e−τLλf‖L2(R2n) ≤
∑
β

e−τ(2|β|+n)‖f‖Lp(R2n)

= 2n(1−(2/p
′)) 1

[2 sinh (|λ|nτ)]n
‖f‖Lp(R2n).
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7 Lp–L∞ Estimates, 1 ≤ p ≤ ∞
We begin with the following theorem.

Theorem 7.1 Let λ ∈ Rm∗, Then for all τ > 0 and 1 ≤ p ≤ ∞, e−τLλ :
Lp(R2n)→ L∞(R2n) is a bounded linear operator. More precisely,

‖e−τLλf‖L∞(R2n) ≤ (2π)−n/p
|λ|n/p

[sinh(|λ|nτ)]n/p
1

[cosh(|λ|nτ)]n/p′
‖f‖Lp(R2n)

for all f ∈ Lp(R2n).

Proof Using the formula (4.1) for the heat kernel κλτ of Lλ,

|κλτ (z, w)| ≤ aτ

for all z and w in Cn and τ > 0, where

aτ = (2π)−n
|λ|n

[2 sinh(|λ|nτ)]n
.

So, for all f ∈ L1(R2n),

|(e−τLλf)(z)| ≤
∫
Cn
|κ(z, w)| |f(w)| dw = aτ‖f‖L1(R2n)

for all z ∈ Cn. Therefore

‖e−τLλf‖L∞(R2n) ≤ aτ‖f‖L1(R2n).

Now, for all f ∈ L∞(R2n),

|(e−τLλf)(z)| ≤ ‖f‖L∞(R2n)

∫
Cn
|κτ (z, w)| dw

≤ aτ

∫
Cn
e−

1
4
|λ| |w|2 coth(τ |λ|n)dw ‖f‖L∞(R2n)

13



for all z ∈ Cn. Thus,

‖e−τLλf‖L∞(R2n) ≤ aτ
(4π)n

|λ|n[coth(|λ|nτ)]n
‖f‖L∞(R2n)

=
1

[cosh(|λ|nτ)]n
‖f‖L∞(R2n).

Using the Riesz–Thorin Theorem, we have

‖e−τLλf‖L∞(R2n) ≤ (2π)−n/p
|λ|n/p

[sinh(|λ|nτ)]n/p
1

[cosh(|λ|nτ)]n/p′
‖f‖Lp(R2n).

�

8 Lp–Lq Estimates, 1 ≤ p ≤ 2, 2 ≤ q ≤ ∞
Using Theorem 6.2 and Theorem 7.1, we have the following theorem.

Theorem 8.1 For τ > 0, the heat semigroup e−τL
λ

with |λ| = 1, initially
defined on S(Rn), can be extended to a bounded linear operator from Lp(R2n)
into Lq(R2n), which we again denote by e−τL

λ
and

‖e−τLλf‖Lq(R2n) ≤
2n(1−(2/p

′))(2/q)

[sinh τ ](2n/q)+(n/p)(1−(2/q))[cosh τ ](n/p′)(1−(2/q)
‖f‖Lp(R2n)

for all f ∈ Lp(R2n).

9 Global Hypoellipticity in the Schwartz Space

The Green function is now used to prove that the λ-twisted Laplacian Lλ

with λ ∈ Rm∗ is globally hypoelliptic.
We need an estimate of the modified Bessel function Kν of order ν,

where ν > 0.

Lemma 9.1 Let ν > 0. Then for every positive number η with η ≥ ν, there
exists a positive constant Cη such that

|Kν(x)| ≤ Cηx
−η, x > 0.

14



Proof Let η be a positive number such that η ≥ ν. Using the asymptotic
behavior of Kν(x) for large x in [10], we know that

Kν(x) ∼
√

π

2x
e−x

as x→∞. So, there exists a positive constant C ′η such that for sufficiently
large x, say, x ≥ R′,

Kν(x) ≤
√

π

2x
e−x ≤ C ′ηx

−((1/2)+η) < C ′ηx
−η.

Using the asymptotic behavior of Kν(x) for small x in [10], we have

Kν(x) ∼ 2ν−1Γ(ν)x−ν

as x→ 0 + . Then there exists a positive constant C ′′η such that

Kν(x) ≤ C ′′ηx
−η

for sufficiently small and positive values of x, say, x ≤ R′′. Since Kν(x)
x−η

is

continuous on (0,∞), it follows that there exists a positive constant C
′′′
η for

which
Kν(x) ≤ C

′′′

η x
−η, x ∈ [R′′, R′],

and the lemma is proved with Cη = max(C ′η, C
′′
η , C

′′′
η ). �

We also need the following estimate.

Lemma 9.2 Let λ ∈ Rm∗. Then for all multi-indices γ on R2n,∣∣∣∂γz (e− i
2
λ·[z,w]

)∣∣∣ ≤ (1

2
m|λ|

)|γ|
|w||γ|, z, w ∈ R2n.

Proof Writing z = x + iy and w = u + iv, where x, y, u and v are in Rn,
we have

[z, w]j = u ·Bjy − x ·Bjv, j = 1, 2, . . . ,m.

Then for j = 1, 2, . . . ,m,

[z, w]j =
n∑
l=1

(Bt
ju)lyl −

n∑
l=1

(Bjv)lxl

15



and hence

e−
i
2
λ·[z,w] = e−

i
2

∑m
j=1 λj

∑n
l=1(B

t
ju)lyle

i
2

∑m
j=1 λj

∑n
l=1(Bjv)lxl .

We also write
∂γz = ∂θx∂

φ
y ,

where θ and φ are multi-indices on Rn with |θ+φ| = |γ|. For k = 1, 2, . . . , n,

∂yk

(
e−

i
2
λ·[z,w]

)
= e−

i
2

∑m
j=1 λj

∑n
l=1(B

t
ju)lyle

i
2

∑m
j=1 λj

∑n
l=1(Bjv)lxl

(
− i

2

m∑
j=1

λj(B
t
ju)k

)

and hence

∂φkyk

(
e−

i
2
λ·[z,w]

)
= e−

i
2

∑m
j=1 λj

∑n
l=1(B

t
ju)lyle

i
2

∑m
j=1 λj

∑n
l=1(Bjv)lxl

(
− i

2

m∑
j=1

λj(B
t
ju)k

)φk

.

So,

∂φy

(
e−

i
2
λ·[z,w]

)
= e−

i
2

∑m
j=1 λj

∑l
l=1(B

t
ju)lyje

i
2

∑m
j=1 λj

∑n
l=1(Bjv)lxl

n∏
k=1

(
− i

2

m∑
j=1

λj(B
t
ju)k

)φk

.

Differentiating the preceding equation with respect to x to the order θ, we
obtain

∂γz

(
e−

i
2
λ·[z,w]

)
= ∂θx∂

φ
y

(
e−

i
2
λ·[z,w]

)
= e−

i
2

∑m
j=1 λj

∑n
l=1(B

t
ju)lyle

i
2

∑m
j=1 λj

∑n
l=1(Bjv)lxl n∏

k=1

(
− i

2

m∑
j=1

λj(B
t
ju)k

)φk
 n∏

k=1

(
i

2

m∑
j=1

λj(Bjv)k

)θk
 .
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Therefore ∣∣∣∂γz (e− i
2
λ·[z,w]

)∣∣∣
=

∣∣∣∣∣∣
n∏
k=1

(
− i

2

m∑
j=1

λj(B
t
ju)k

)φk
∣∣∣∣∣∣
∣∣∣∣∣∣
n∏
k=1

(
i

2

m∑
j=1

λj(Bjv)k

)θk
∣∣∣∣∣∣ .

If we let ‖Bj‖ denote the operator norm of Bj for j = 1, 2, . . . ,m, then∣∣∣∣∣∣
n∏
k=1

(
− i

2

m∑
j=1

λj(B
t
ju)k

)φk
∣∣∣∣∣∣ ≤

n∏
k=1

(
1

2

m∑
j=1

|λj||Bt
ju|

)φk

≤
n∏
k=1

(
1

2
|λ|

(
m∑
j=1

‖Bj‖

)
|u|

)φk

=

(
1

2
|λ|
)|φ|( m∑

j=1

‖Bj‖

)|φ|
|u||φ|

≤
(

1

2
|λ|
)|φ|( m∑

j=1

‖Bj‖

)|φ|
|w||φ|.

Since Bj is an orthogonal matrix for j = 1, 2, . . . ,m, it follows that

‖Bj‖ = 1, j = 1, 2, . . . ,m,

and hence ∣∣∣∣∣∣
n∏
k=1

(
− i

2

m∑
j=1

λj(B
t
ju)k

)φk
∣∣∣∣∣∣ ≤

(
1

2
m|λ|

)|φ|
|w||φ|.

Similarly, ∣∣∣∣∣∣
n∏
k=1

(
i

2

m∑
j=1

λj(Bjv)k

)θk
∣∣∣∣∣∣ ≤

(
1

2
m|λ|

)|θ|
|w||θ|.

Thus, ∣∣∣∂γz (e− i
2
λ·[z,w]

)∣∣∣ ≤ (1

2
m|λ|

)|γ|
|w||θ|
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and the proof is complete. �

We can now give the global hypoellipticity of the λ-twisted Laplacian
Lλ with λ ∈ Rm∗ in the Schwartz space.

Theorem 9.3 Let λ ∈ Rm∗. Then the λ-twisted Laplacian Lλ is globally
hypoelliptic in the sense that

u ∈ S ′(R2n), Lλu ∈ S(R2n)⇒ u ∈ S(R2n),

where S ′(R2n) is the space of all tempered distributions on R2n.

Proof Let f = Lλu. Then for all z ∈ R2n,

u(z) = ((Lλ)−1f)(z)

=

∫
R2n

gλ(w)f(z − w)e−
i
2
λ·[z,w]dw,

where

gλ(z) =
(
√

2π)−n

2
√

2π

Γ(n/2)

(
√
|λ||z|)n−1

K(n−1)/2

(
1

4
|λ||z|2

)
.

Let β be any multi-index. Then for all z ∈ R2n,

(∂βu)(z) =

∫
R2n

gλ(w)∂βz

(
f(z − w)e−

i
2
λ·[z,w]

)
dw.

To justify the interchange of differentiation and integration, we write for all
z ∈ R2n, ∫

R2n

|gλ(w)|
∣∣∣∂βz (f(z − w)e−

i
2
λ·[z,w]

)∣∣∣ dw = I1(z) + I2(z),

where

I1(z) =

∫
|w|≤1

|gλ(w)|
∣∣∣∂βz (f(z − w)e−

i
2
λ·[z,w]

)∣∣∣ dw
and

I2(z) =

∫
R2n

|gλ(w)|
∣∣∣∂βz (f(z − w)e−

1
2
iλ·[z,w]

)∣∣∣ dw.
Using the hypothesis that f ∈ S(Rn), the definition of [z, w], the formula
of Leibniz to the effect that

∂βz

(
f(z − w)e−

i
2
λ·[z,w]

)
=
∑
γ≤β

(
β

γ

)
(∂β−γf)(z − w)∂γ

(
e−

i
2
λ·[z,w]

)
18



and Lemma 9.2, we get
sup
z∈R2n

|I1(z)| <∞

and
sup
z∈R2n

|I2(z)| <∞.

Now, let α and β be arbitrary multi-indices with α 6= 0. Then for all z ∈ R2n,

|zα(∂βu)(z)| ≤ 2|α|(J1(z) + J2(z)),

where

J1(z) =

∫
R2n

|w||α||gλ(w)|
∣∣∣∂βz (f(z − w)e−

i
2
λ·[z,w]

)∣∣∣ dw
and

J2(z) =

∫
R2n

|z − w||α||gλ(w)|
∣∣∣∂βz (f(z − w)e−

i
2
λ·[z,w]

)∣∣∣ dw.
As in the case when α = 0,

sup
z∈R2n

|J1(z)| <∞.

By breaking R2n into |w| ≤ 1 and |w| ≥ 1, and using the same argument as
in the case when α = 0, we see that

sup
z∈R2n

|J2(z)| <∞,

and the proof is complete. �

10 Global Hypoellipticity in Gelfand–Shilov

Spaces

Let µ and ν be positive real numbers such that µ+ν ≥ 1. Then the Gelfand–
Shilov space Sµν (Rn) is defined to be the set of all functions ϕ in C∞(Rn)
for which there exists a positive constant C such that for all multi-indices
α and β,

|xα(∂βϕ)(x)| ≤ C |α|+|β|+1(α!)ν(β!)µ, x ∈ Rn.
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It can be shown that a function ϕ is in Sµν (Rn) if and only if there exist
positive constants C and ε such that for all muti-indices α,

|(∂αϕ)(x)| ≤ C |α|+1(α!)µe−ε|x|
1/ν

, x ∈ Rn.

This characterization tells us that a function in a Gelfand–Shilov space has
exponential decay at infinity. Moreover, a function ϕ is in the Gelfand–
Shilov space Sµν (Rn) if and only if there exist positive constants C and ε
such that

|ϕ(x)| ≤ Ce−ε|x|
1/ν

, x ∈ Rn,

and
|ϕ̂(ξ)| ≤ Ce−ε|ξ|1/µ, ξ ∈ Rn.

It is worth pointing out that the Gelfand–Shilov space S1
1(Rn) is the same

as the test space F for Fourier hyperfunctions. In fact, F is the set of all
functions ϕ in C∞(Rn) for which there exist positive constants C, ε and δ
such that for all multi-indices α,

|(∂α)(x)| ≤ Cδ|α|α!e−ε|x|, x ∈ Rn.

We have the following theorem on the global hypoellipticity of the twisted
Laplacian Lλ in Gelfand–Shilov spaces.

Theorem 10.1 Let µ and ν be positive real numbers with µ+ ν ≥ 1. Then

u ∈ S ′(R2n), Lλu ∈ Sµν (R2n)⇒ u ∈ Sµν (R2n).

Proof Let f ∈ Sµν (R2n). Then there exists a positive constant C such that
for all multi-indices α and β,

|zα(∂βf)(z)| ≤ C |α|+|β|+1(α!)ν(β!)µ, z ∈ Cn. (10.1)

As in the proof of Theorem 9.3, we need to estimate I1(z). To do this, we
use the inequality (10.1), the definition of [z, w] and the Leibniz formula to
obtain a positive constant C1 such that

I1(z) ≤ C
|β|+1
1 (β!)µ

∫
|w|≤1

|gλ(w)| dw.

By Lemma 9.2, we see that there exists a positive constant C2 such that

I1(z) ≤ C
|β|+1
2 (β!)µ, z ∈ Cn.

20



Similarly, there exists a positive constant C4 such that

I2(z) ≤ C
|β|+1
4 (β!)µ, z ∈ Cn.

Then as in the proof of Theorem 9.3 again, we need to estimate J1(z) and
J2(z). Using the same argument as in the case when α = 0, we obtain a
positive constants C5 for which

J1(z) ≤ C
|α|+|β|+1
5 (α!)µ(β!)µ, z ∈ Cn.

Using the Leibniz formula and Lemma 9.2, we get a positive constant C6

such that

J2(z) ≤ C
|α|+|β|+1
6 (α!)ν(β!)µ

∫
Cn
|w||β||gλ(w)| dw, z ∈ C.

By breaking Cn into |w| ≤ 1 and |w| ≥ 1 and using Lemma 9.2, the proof
is complete. �

11 Essential Self-Adjointness

Let λ ∈ Rm∗. Then using the explicit formula for the λ-twisted Laplacian
Lλ given in (1.1), it can be checked easily that Lλ is a symmetric operator
from L2(R2n) into L2(R2n) with dense domain S. So, Lλ is closable and we
denote the closure by Lλ0 .

Proposition 11.1 Let λ ∈ Rm∗. Then L0 is closed and symmetric.

Proof We only need to prove that Lλ0 is symmetric. Let u and v be functions
in the domain D(Lλ0) of Lλ0 . Then we can find sequences {ϕl}∞l=1 and {ψl}∞l=1

in S such that
ϕl → u,

Lλϕl → Lλ0u,

ψl → v

and
Lλψl → Lλ0v
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in L2(R2n) as l → ∞. So, using the symmetry of Lλ as a linear operator
from L2(R2n) into L2(R2n) with domain S,

(Lλ0u, v) = lim
l→∞

(Lλϕl, ψl) = lim
l→∞

(ϕl, L
λψ) = (u, Lλ0v).

Therefore Lλ0 is symmetric. �

For all λ ∈ Rm∗, let Σ(Lλ0) be the spectrum of Lλ0 . Then we have the
following theorem.

Theorem 11.2 Let λ ∈ Rm∗. Then

Σ(Lλ0) = {|λ|n(2|β|+ n) : β ∈ (N ∪ {0})n}.

Moreover, for every β ∈ (N ∪ {0})n, the number |λ|n(2|β|+ n) is an eigen-
value of Lλ0 with infinite multiplicity.

Proof It follows from Theorem 2.2 that every number |λ|n(2|β| + n) with
β ∈ N∪{0} is an eigenvalue of Lλ0 with infinite multiplicity and hence is an
element of Σ(Lλ0). Now, let µ ∈ C. Suppose that

µ 6= |λ|n(2|β|+ n)

for all β ∈ (N∪{0})n. If we can prove that the range R(Lλ0 −µI) of Lλ0 −µI
is dense in L2(R2n), where I is the identity operator on L2(R2n), and there
exists a positive constant C such that

‖(Lλ0 − µI)u‖L2(R2n) ≥ C‖u‖L2(R2n), u ∈ D(Lλ0),

then µ lies in the resolvent set ρ(Lλ0) and the proof is then complete. Let
M be the subspace of L2(R2n) consisting of all finite linear combinations of
elements in {eλα,β : α, β ∈ (N∪{0})n}. Then by Theorem 2.1, M is dense in
L2(R2n). Let f ∈M. Then we can write

f =
∑
|α|≤N1

∑
|β|≤N2

aα,βe
λ
α,β,

where N1 and N2 are positive integers and

aα,β ∈ C, |α| ≤ N1, |β| ≤ N2.
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Let
u =

∑
|α|≤N1,|β|≤N2

aα,β
|λ|n(2|β|+ n)− µ

eλα,β.

Let Cµ = infβ∈(N∪{0})n ||λ|n(2|β|+ n)− µ| . Since

µ 6= |λ|n(2|β|+ n)

for all β ∈ (N∪{0})n, it follows that Cµ > 0. Therefore u ∈ S. Furthermore,

(Lλ0 − µI)u = (Lλ − µI)u =
∑
|α|≤N1

∑
|β|≤N2

aα,β
|λ|n(2|β|+ n)− µ

Lλeλα,β

=
∑
|α|≤N1

∑
|β|≤N2

aα,βe
λ
α,β = f.

Therefore f ∈ R(Lλ0−µI). So, M ⊆ R(Lλ0−µI). This proves that R(Lλ0−µI)
is dense in L2(R2n). Let u ∈ D(Lλ0). Then using the symmetry of Lλ,
Theorem 2.1 and Parseval’s identity,

‖(Lλ0 − µI)u)‖2L2(R2n) =

∥∥∥∥∥∑
α

∑
β

((Lλ0 − µI)u, eλα,β)eλα,β

∥∥∥∥∥
2

L2(R2n)

=

∥∥∥∥∥∑
α

∑
β

(u, ((Lλ0)∗ − µI)eλα,β)eλα,β

∥∥∥∥∥
2

L2(R2n)

=

∥∥∥∥∥∑
α

∑
β

(u, (Lλ − µI)eλα,β)eλα,β

∥∥∥∥∥
2

L2(R2n)

=

∥∥∥∥∥∑
α

∑
β

(u, (|λ|n(2|β|+ n)− µ)eλα,β

∥∥∥∥∥
2

L2(R2n)

=

∥∥∥∥∥∑
α

∑
β

(|λ|n(2|β|+ n)− µ)(u, eα,β)eλα,β

∥∥∥∥∥
2

L2(R2n)

=
∑
α

∑
β

||λ|n(2|β|+ n)− µ|2 |(u, eλα,β)|2.

Thus,
‖(Lλ0 − µI)u‖L2(R2n) ≥ Cµ‖u‖L2(R2n), u ∈ D(Lλ0).
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By Theorem X.1 on page 136 of [11] and the preceding theorem, we see
that for all λ ∈ Rm∗, Lλ0 is self-adjoint and hence the λ-twisted Laplacian Lλ0
given by (1.1) from L2(R2n) into L2(R2n) with dense domain S is essentially
self-adjoint.

12 Sobolev Spaces

Let s ∈ R. Then for all λ ∈ Rm∗, we define the L2-Sobolev space Hs,2,λ of
order s by

Hs,2,λ =

{
u ∈ S ′(R2n) :

∑
α

∑
β

|λ|2ns(2|β|+ n)2s|(u, eλα,β)|2 <∞

}
.

It is easy to see that Hs,2,λ is an inner product space with inner product
( , )s,2,λ and norm ‖ ‖s,2,λ given by

(u, v)s,2,λ =
∑
α

∑
β

|λ|2ns(2|β|+ n)2s(u, eλα,β)(eλα,β, v)

and
‖u‖2s,2,λ =

∑
α

∑
β

|λ|2ns(2|β|+ n)2s|(u, eλα,β)|2

for all u and v in Hs,2,λ.

Theorem 12.1 Hs,2,λ is a Hilbert space with respect to the inner product
( , )s,2,λ.

Proof If s ≥ 0, then the domain D((Lλ0)s) of the self-adjoint operator (Lλ0)s

from L2(R2n) into L2(R2n) is a Banach space with respect to the norm | |s
given by

|u|2s = ‖(Lλ0)su‖2L2(R2n) + ‖u‖2L2(R2n), u ∈ D((Lλ0)s).

Obviously,

‖(Lλ0)su‖2L2(R2n) =
∑
α

∑
β

|λ|2ns(2|β|+ n)2s|(u, eλα,β)|2 = ‖u‖2s,2,λ.
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So, ‖ ‖s,2,λ is a norm in Hs,2,λ and hence Hs,2,λ is complete with respect to
‖ ‖s,2,λ. Let s < 0. Then Hs,2,λ is the dual space of H−s,2,λ and is hence
complete. �

From the proof of the preceding theorem, we can have a characterization
of the domain D(Lλ0) of the closure of the λ-twisted Laplacian.

Theorem 12.2 Let λ ∈ Rm∗. Then D(Lλ0) = H1,2,λ.

The following result can be considered to be the analog for the λ-
twisted Laplacian of the Agmon–Douglis–Nirenberg inequalities for ellip-
tic boundary-value problems in [1] and globally elliptic pseudo-differential
operators on Rn in [16].

Theorem 12.3 Let λ ∈ Rm∗. Then for all s ∈ R,

‖u‖s+1,2,λ = ‖Lλ0u‖s,2,λ, u ∈ Hs+1,2,λ.

Proof Let u ∈ Hs+1,2,λ. Then

‖Lλ0u‖2s,2,λ =
∑
α

∑
β

|λ|2ns(2|β|+ n)2s|(Lλ0u, eλα,β)|2

=
∑
α

∑
β

|λ|2ns(2|β|+ n)2s|λ|2n(2|β|+ n)2)2|(u, eλα,β)|2

=
∑
α

∑
β

|λ|2n(s+1)(2|β|+ n)2(s+1)|(u, eα,β)|2

= ‖u‖2s+1,2.

�

We give as a corollary a result on the global regularity of the λ-twisted
Laplacian on Sobolev spaces.

Theorem 12.4 Let λ ∈ Rm∗. Then for all s ∈ R,

u ∈ S ′, Lλu ∈ Hs,2,λ ⇒ u ∈ Hs+1,2,λ.

Remark 12.5 There is a loss of one derivative globally on R2n because the
operator Lλ0 with λ ∈ Rm∗ is not globally elliptic on R2n as defined in [16],
notwithstanding its ellipticity at every point in R2n.
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