
Initial Value Problems for Heat Equations Generated
by Strongly Elliptic (ρ,Λ)-Pseudo-Differential

Operators on Rn

Yaodong Gao and M. W. Wong1

Department of Mathematics and Statistics
York University
4700 Keele Street

Toronto, Ontario M3J 1P3
Canada

E-Mail: terrysion@hotmail.com, mwwong@yorku.ca

Abstract Using G̊arding’s inequality for strongly (ρ,Λ)-elliptic
pseudo-differential operators on Rn, it is shown that these pseudo-
differential operators generate strongly continuous one-parameter
semigroups of bounded linear operators on L2(Rn). Applications
to solutions and mild solutions of initial value problems for heat
equations governed by strongly (ρ,Λ)-elliptic pseudo-differential op-
erators on Rn are given.

Key Words pseudo-differential operators, symbols in Sm
ρ,Λ, Lp-

boundedness, (ρ,Λ)-ellipticity, strong (ρ,Λ)-ellipticity, G̊arding’s
inequality, Poisson’s equations, weak solutions, strong solutions,
strongly continuous one-parameter semigroups, Hille–Yosida–
Phillips theorem, initial value problems, heat equations, solutions,
mild solutions

2020 Mathematics Subject Classification Primary: 47D06,
47G30

1 Introduction

Our starting point is based on the papers [6] and [10]. Let Λ ∈ C∞(Rn) be
a positive function such that there exist positive constants for which

C0(1 + |ξ|)µ0 ≤ Λ(ξ) ≤ C1(1 + |ξ|)µ1 , ξ ∈ Rn. (1.1)

1This research has been partially supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC) and York University (PER).
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Furthermore, we assume that there exists a positive constant µ with µ ≥
µ1 such that for all multi-indices α, we can find a positive constant Cα,
depending on α only, for which

|(∂αΛ)(ξ)| ≤ CαΛ(ξ)
1− 1

µ
|α|, ξ ∈ Rn. (1.2)

Let m ∈ R and let ρ ∈
(
0, 1

µ

]
. Then we define Sm

ρ,Λ to be the set of all

functions σ in C∞(Rn × Rn) such that for all multi-indices α and β, there
exists a positive constant Cα,β, depending on α and β only, for which

|(∂α
x∂

β
ξ σ)(x, ξ)| ≤ Cα,βΛ(ξ)

m−ρ|β|, x, ξ ∈ Rn. (1.3)

A function in Sm
ρ,Λ is said to be a symbol of order m and type ρ with weight

Λ. It should be noted that if we let Λ be the weight defined by

Λ(ξ) =
√

1 + |ξ|2, ξ ∈ Rn,

then Sm
ρ,Λ is the same as a special case of the Hörmander class Sm

ρ,0 in [7].
Let σ ∈ Sm

ρ,Λ. Then we define the pseudo-differential operator Tσ associated
to the symbol σ by

(Tσφ)(x) = (2π)−n/2

∫
Rn

eix·ξσ(x, ξ)φ̂(ξ) dξ, x ∈ Rn,

for all φ in the Schwartz space S, where

φ̂(ξ) = (2π)−n/2

∫
Rn

e−ix·ξφ(x) dx, ξ ∈ Rn.

It can be shown easily that Tσ : S → S is a continuous linear mapping.
The following results can be found in the book [8] by Kumano-go. They

are analogs of the corresponding results for pseudo-differential operators
with symbols in Sm

1,0 given in the book [11] by Wong.

Theorem 1.1 Suppose that σj ∈ S
mj

ρ,Λ, where

m0 > m1 > m2 > · · · > mj → −∞

as j → ∞. Then there exists a symbol σ in Sm0
ρ,Λ such that

σ ∼
∞∑
j=0

σj,
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i.e.,

σ −
N−1∑
j=0

σj ∈ SmN
ρ,Λ

for every positive integer N . Moreover, if τ is another symbol with the same
asymptotic expansion, then σ − τ ∈

⋂
m∈R S

m
ρ,Λ.

Theorem 1.2 Let σ ∈ Sm1
ρ,Λ and τ ∈ Sm2

ρ,Λ. Then TσTτ = Tλ, where λ ∈
Sm1+m2
ρ,Λ and

λ ∼
∑
µ

(−i)µ

µ!
(∂µ

ξ σ)(∂
µ
xτ).

Here, the asymptotic expansion means that

λ−
∑
|µ|<N

(−i)|µ|

µ!
(∂µ

ξ σ)(∂
µ
xτ) ∈ Sm1+m2−ρN

ρ,Λ

for every positive integer N .

Theorem 1.3 Let σ ∈ Sm
ρ,Λ. Then the formal adjoint T ∗

σ of Tσ is the
pseudo-differential operator Tτ , where τ ∈ Sm

ρ,Λ and

τ ∼
∑
µ

(−i)|µ|

µ!
∂µ
x∂

µ
ξ σ.

Here, the asymptotic expansion means that

τ −
∑
|µ|<N

(−i)µ

µ!
∂µ
x∂

µ
ξ σ ∈ Sm−ρN

ρ,Λ

for every positive integer N .

Using the formal adjoint, we can extend the definition of a pseudo-
differential operator from the Schwartz space S to the space S ′ of all tem-
pered distributions. To wit, let σ ∈ Sm

ρ,Λ. Then for all u in S ′, we define the
linear functional Tσu on S by

(Tσu)(φ) = u(T ∗
σφ), φ ∈ S.

It is easy to see that Tσ maps S ′ into S ′ continuously. In fact, we have the
following theorem.
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Theorem 1.4 Let σ ∈ S0
ρ,Λ. Then Tσ : L2(Rn) → L2(Rn) is a bounded

linear operator.

The proof of Theorem 1.4 can be found in the book [8] by Kumano-go.

Remark 1.5 If
Λ(ξ) =

√
1 + |ξ|2, ξ ∈ Rn,

and
ρ ∈ (0, 1),

then S0
ρ,Λ is the Hörmander class S0

ρ,0 and it is well known that Theorem 1.4
cannot be extended to Lp(Rn) with 1 < p < ∞. Nevertheless, there exists
an important subclass of S0

ρ,Λ, denoted by M0
ρ,Λ, for which Theorem (1.4) is

true for Lp(Rn) for all p with 1 < p < ∞. See [2, 3, 6, 10], among others,
in this connection.

A symbol σ in Sm
ρ,Λ is said to be (ρ,Λ)-elliptic if there exist positive

constants C and R such that

|σ(x, ξ)| ≥ CΛ(ξ)m, |ξ| ≥ R.

Theorem 1.6 Let σ ∈ Sm
ρ,Λ be (ρ,Λ)-elliptic. Then there exists a symbol τ

in S−m
ρ,Λ such that

TτTσ = I +R

and
TσTτ = I + S,

where R and S are pseudo-differential operators with symbols in
⋂

k∈R S
k
ρ,Λ.

The pseudo-differential operator Tτ in the preceding theorem is known
as a parametrix of the (ρ,Λ)-elliptic pseudo-differential operator Tσ.

To extend Theorem 1.4 to pseudo-differential operators with symbols in
Sm
ρ,Λ, where m is an arbitrary real number, we need (ρ,Λ)-Sobolev spaces.

To this end, we need the following proposition.

Proposition 1.7 Λ ∈ S1
ρ,Λ.
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Proof Let α be a multi-index. Then by (1.2), there exists a positive
constant Cα such that

|(∂αΛ)(ξ)| ≤ CαΛ(ξ)
1− 1

µ
|α|, ξ ∈ Rn.

Since ρ ∈
(
0, 1

µ

]
, it follows that

|(∂αΛ)(ξ)| ≤ CαΛ(ξ)
1−ρ|α|, ξ ∈ Rn.

Therefore
Λ ∈ S1

ρ,Λ.

2

Let s ∈ R. Then we define Λ(D)s to be the Fourier multiplier given by

Λ(D)su = F−1ΛsFu, u ∈ S ′,

where F and F−1 denote, respectively, the Fourier transform and the inverse
Fourier transform.

For s ∈ R, we define the Sobolev space Hs,2
Λ by

Hs,2
Λ = {u ∈ S ′ : Λ(D)su ∈ L2(Rn)}.

Then Hs,2
Λ is a Hilbert space in which the norm ∥ ∥s,2,Λ is given by

∥u∥s,2,Λ = ∥Λ(D)su∥L2(Rn), u ∈ Hs,2
Λ .

The following result is known as the Sobolev embedding theorem.

Theorem 1.8 For s ≤ t, H t,2
Λ ⊆ Hs,2

Λ , and there exists a positive constant
C such that

∥u∥s,2,Λ ≤ C∥u∥t,2,Λ, u ∈ H t,2
Λ .

We have the following extension of Theorem 1.4.

Theorem 1.9 Let σ ∈ Sm
ρ,Λ. Then for −∞ < s < ∞, Tσ : Hs,2

Λ → Hs−m,2
Λ

is a bounded linear operator.

Let σ ∈ Sm
ρ,Λ, m > 0. Then Tσ : S → S. So, we can consider Tσ as a

linear operator from L2(Rn) into L2(Rn) with dense domain S.
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Proposition 1.10 The linear operator Tσ from L2(Rn) into L2(Rn) with
domain S is closable.

A consequence of Proposition 1.10 is that the minimal operator Tσ,0

of Tσ exists. Let us recall that the domain D(Tσ,0) of Tσ,0 consists of all
functions f in L2(Rn) for which a sequence {φk}∞k=1 in S can be found such
that φk → u in L2(Rn) and Tσφk → f in L2(Rn) for some f in L2(Rn) as
k → ∞. Moreover, Tσ,0u = f.

Let u and f be functions in L2(Rn). We say that u lies in D(Tσ,1) and
Tσ,1u = f if and only if

(u, T ∗
σφ) = (f, φ), φ ∈ S,

where

(u, v) =

∫
Rn

u(x)v(x) dx

for all measurable functions u and v on Rn, provided that the integral exists.

Proposition 1.11 Tσ,1 is a closed linear operator from L2(Rn) into L2(Rn)
with domain D(Tσ,1) containing S.

Proposition 1.12 S ⊆ D(Tσ,1), where T t
σ,1 is the true adjoint of Tσ,1.

Proposition 1.13 Tσ,1 is an extension of Tσ,0.

A consequence of Proposition 1.13 is that T t
σ,0 is an extension of T t

σ,1.
Since S ⊆ D(T t

σ,1), it follows that S ⊆ D(T t
σ,0) as well. In this perspective,

we have the following result.

Proposition 1.14 Tσ,1 is the largest closed extension of Tσ having S con-
tained in the domain of its adjoint. In other words, if B is a closed extension
of Tσ such that S ⊆ D(Bt), then Tσ,1 is an extension of B.

In view of the preceding result, we call Tσ,1 the maximal operator of
Tσ. We can prove that Tσ,0 = Tσ,1 if σ is (ρ,Λ)-elliptic. We begin with the
following characterization of the domain of Tσ,0.

Theorem 1.15 If σ ∈ Sm
ρ,Λ is (ρ,Λ)-elliptic, then D(Tσ,0) = Hm,2

Λ .
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To prove Theorem 1.15, we use the following estimate, which is the ana-
log of the Agmon–Douglis–Nirenberg estimate in [1] for pseudo-differential
operators. In addition, we use a density result. They are given, respectively,
as Theorem 1.16 and Proposition 1.17.

Theorem 1.16 Let σ ∈ Sm
ρ,Λ be (ρ,Λ)-elliptic. Then there exist positive

constants C1 and C2 such that

C1∥u∥m,2,Λ ≤ ∥Tσu∥0,2,Λ + ∥u∥0,2,Λ ≤ C2∥u∥m,2,Λ, u ∈ Hm,2
Λ .

Proposition 1.17 For −∞ < s < ∞, S is dense in Hs,2
Λ .

We can now state the main result in this section.

Theorem 1.18 Let σ ∈ Sm
ρ,Λ be (ρ,Λ)-elliptic. Then Tσ,0 = Tσ,1.

The aim of this paper is to use G̊arding’s inequality to prove that
strongly (ρ,Λ)-elliptic pseudo-differential operators are infinitesimal gen-
erators of strongly continuous one-parameter semigroups of bounded lin-
ear operators on L2(Rn). In Section 2, we give G̊arding’s inequality for
strongly (ρ,Λ)-elliptic pseudo-differential operators on Rn. In Section 3,
we aim at giving the key result on the existence and uniqueness of weak
(and hence strong) solutions of Poisson’s equations modelled by (ρ,Λ)-
elliptic pseudo-differential operators on Rn. The key result in Section 3
and the Hille–Yosida–Phillips theorem are used in Section 4 to prove that
strongly (ρ,Λ)-elliptic pseudo-differential operators generate strongly con-
tinuous one-parameter semigroups of bounded linear operators on L2(Rn).
We give in Section 5 solutions of initial value problems for heat equations
governed by strongly (ρ,Λ)-elliptic pseudo-differential operators.

Related results can be found in [2, 3, 10].

2 G̊arding’s Inequality

The main result in this section is G̊arding’s inequality for strongly (ρ,Λ)-
elliptic operators. It is an extension of G̊arding’s inequality in Chapter 17
of the book [11].
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Theorem 2.1 (G̊arding’s Inequality) Let σ ∈ S2m
ρ,Λ be such that there exist

positive constants C and R for which

Reσ(x, ξ) ≥ CΛ(ξ)2m, |ξ| ≥ R.

Then we can find a positive constant C ′ and a constant Cs for every real
number s ∈

[
ρ
2
,∞

)
such that

Re (Tσφ, φ) ≥ C ′∥φ∥2m,2,Λ − Cs∥φ∥2m−ρs,2,Λ, φ ∈ S.

A symbol satisfying the hypothesis of the theorem is said to be strongly
(ρ,Λ)-elliptic. In order to prove the theorem, we need some preliminary
results, some of which are of interest in their own right.

Lemma 2.2 Let F ∈ C∞(C). Then for every σ in S0
ρ,Λ, F ◦ σ ∈ S0

ρ,Λ.

Proof We need to prove that for all multi-indices α and β, there exists a
positive constant Cα,β such that

|(∂α
x∂

β
ξ (F ◦ σ))(x, ξ)| ≤ Cα,βΛ(ξ)

−ρ|β|, x, ξ ∈ Rn. (2.1)

(2.1) is true for all multi-indices α and β with |α + β| = 0. Indeed, there
exists a positive constant C such that

|σ(x, ξ)| ≤ C, x, ξ ∈ Rn.

Thus, F ◦ σ is in fact a C∞ function on a compact subset of R2n. Hence
there exists another positive constant C ′ such that

|(F ◦ σ)(x, ξ)| ≤ C ′, x, ξ ∈ Rn.

Now, suppose that (2.1) is valid for all F in C∞(C), σ in S0
ρ,Λ and multi-

indices α and β with |α + β| = l. Let α and β be multi-indices with

|α + β| = l + 1.

We first suppose that
∂α
x∂

β
ξ = ∂α

x∂
γ
ξ ∂ξj

for some multi-index γ and some j = 1, 2, . . . , n. Then, by the chain rule,

(∂α
x∂

β
ξ (F ◦ σ))(x, ξ) = (∂α

x∂
γ
ξ (F1 ◦ σ)∂ξjσ + (F2 ◦ σ)∂ξjσ))(x, ξ)
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for all x and ξ in Rn, where F1 and F2 are the partial derivatives of F with
respect to, respectively, the first and second variables. Now, by Leibniz’
formula and the induction hypothesis, there exist positive constants Cλ,δ

and Cα,λ,γ,δ,j such that

|∂α
x∂

γ
ξ ((F1 ◦ σ)∂ξjσ)(x, ξ)|

≤
∑

λ≤α,δ≤γ

(
α

λ

)(
γ

δ

)
|(∂λ

x∂
δ
ξ (F1 ◦ σ))(x, ξ)| |(∂α−λ

x ∂γ−δ
ξ (∂ξjσ))(x, ξ)|

≤
∑

λ≤α,δ≤γ

(
α

λ

)(
γ

δ

)
Cλ,δΛ(ξ)

−ρ|δ|Cα,λ,γ,δ,jΛ(ξ)
−ρ|γ|+ρ|δ|−ρ

= Cα,γ,jΛ(ξ)
−ρ(|γ|+1), x, ξ ∈ Rn,

where

Cα,γ,j =
∑

λ≤α,δ≤γ

(
α

λ

)(
γ

δ

)
Cλ,δCα,λ,γ,δ,j.

Similarly, there exists a positive constant C ′
α,γ,j such that

|(∂α
x∂

γ
ξ ((F2 ◦ σ)∂ξjσ)(x, ξ)| ≤ C ′

α,γ,jΛ(ξ)
−ρ(|γ|+1)

for all x and ξ in Rn. Therefore

|(∂α
x∂

β
ξ (F ◦ σ))(x, ξ)| ≤ (Cα,γ,j + C ′

α,γ,j)Λ(ξ)
−ρ|β|

for all x and ξ in Rn. Now, we suppose that

∂α
x∂

β
ξ = ∂γ

x∂xj
∂β
ξ

for some multi-index γ and some j = 1, 2, . . . , n. Then as before, there
exists a positive constant C

′′
α,γ,j such that

|(∂α
x∂

β
ξ (F ◦ σ))(x, ξ)| ≤ C

′′

α,γ,jΛ(ξ)
−ρ|β|

for all x and ξ in Rn. Thus, by the principle of mathematical induction,
(2.1) follows. 2

Lemma 2.3 Let σ be a strongly elliptic symbol in S2m
ρ,Λ. Then there exist

positive constants γ and κ such that

Reσ(x, ξ) ≥ γΛ(ξ)2m − κΛ(ξ)2m−1, x, ξ ∈ Rn.
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Proof By strong ellipticity, there exist positive constants C and R such
that

Reσ(x, ξ) ≥ CΛ(ξ)2m, |ξ| ≥ R.

Since σ ∈ S2m
ρ,Λ, we can find a positive constant K such that

|σ(x, ξ)| ≤ KΛ(ξ)2m, x, ξ ∈ Rn.

Therefore

|Reσ(x, ξ)| ≤ KΛ(ξ)2m ≤ K(1 +R2)2m, |ξ| ≤ R.

Hence there exists a positive constant M such that

Reσ(x, ξ) ≥ −M, |ξ| ≤ R.

Since Reσ
Λ2m−1 is a continuous function on the compact set {ξ ∈ Rn : |ξ| ≤ R},

we can find a positive constant κ such that

Reσ(x, ξ)

Λ(ξ)2m−1
≥ −κ, |ξ| > R.

Therefore
Reσ(x, ξ) + κΛ(ξ)2m−1 > 0, |ξ| ≤ R.

Since Reσ+κΛ2m−1

Λ2m is a positive and continuous function on the compact set
{ξ ∈ Rn : |ξ| ≤ R}, there is a positive constant δ such that

Reσ(x, ξ) + κΛ(ξ)2m−1

Λ(ξ)2m
≥ δ, |ξ| ≤ R.

So, the lemma is proved if we let γ = min(C, δ). 2

Proof of Theorem 2.1 Let Tτ = Λ(D)−mTσΛ(D)−m. Then using the
asymptotic expansion for the product of two pseudo-differential operators,

TσΛ(D)−m = Tτ1 ,

where
τ1 − Λ−mσ ∈ Sm−ρ

ρ,Λ . (2.2)

10



Similarly,
Tτ = Λ(D)−mTτ1

and
τ − Λ−mτ1 ∈ S−ρ

ρ,Λ. (2.3)

Multiplying (2.2) by Λ−m and adding the result to (2.3), we get

τ − Λ−2mσ ∈ S−ρ
ρ,Λ.

Therefore
τ = Λ−2mσ + r,

where r ∈ S−ρ
ρ,Λ. So, by Lemma 2.3,

Re τ = Λ−2mReσ +Re r

≥ Λ−2m[γΛ2m − κΛ2m−ρ] + Re r

= γ − κΛ−ρ + r

≥ γ − κ′Λ−ρ,

where κ′ is another positive constant. Therefore τ satisfies the conclusion
of Lemma 2.3 with m = 0. Let us suppose for a moment that G̊arding’s
inequality is valid for m = 0. Then we can find a positive constant C ′ and
a positive constant Cs for every real number s ∈

[
ρ
2
,∞

)
such that

Re (Tσφ, φ) = Re (Λ(D)mTτΛ(D)mφ, φ)

= Re (TτΛ(D)mφ,Λ(D)mφ)

≥ C ′∥Λ(D)mφ∥20,2 − Cs∥Λ(D)φ∥2−ρs,2

= C ′∥φ∥2m,2,Λ − Cs∥φ∥2m−ρs,2,Λ

for all φ in S. We are now ready to prove G̊arding’s inequality for m = 0.
By Lemma 2.3, we have positive constants γ and κ such that

Reσ + κΛ−ρ ≥ γ.

Let F ∈ C∞(C) be such that

F (z) =

√
γ

2
+ z, z ∈ [0,∞).
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Let τ be the function defined on Rn × Rn by

τ(x, ξ) = F (2(Reσ(x, ξ) + κΛ(ξ)−ρ − γ)), x, ξ ∈ Rn.

Then by Lemma 2.3, τ ∈ S0
ρ,Λ and for all x and ξ in Rn,

τ(x, ξ) =

√
γ

2
+ 2Reσ(x, ξ) + 2κΛ(ξ)−ρ − 2γ

=

√
2Reσ(x, ξ) + 2κΛ(ξ)−ρ − 3

2
γ.

Using the asymptotic expansion for the formal adjoint of a pseudo-differential
operator, we have

T ∗
τ = Tτ∗ ,

where τ ∗ ∈ S0
ρ,Λ and τ − τ ∗ ∈ S−ρ

ρ,Λ. Using also the asymptotic expansion for
the product,

T ∗
τ Tτ = Tλ,

where
λ− τ ∗τ ∈ S−ρ

ρ,Λ.

If we let r1 and r′1 in S−ρ
ρ,Λ be such that

τ ∗ = τ + r1

and
λ = τ ∗τ + r′1,

then with r2 = r1τ + r′ ∈ S−ρ
ρ,Λ, we get

λ = (τ + r1)τ + r′1
= τ 2 + r1τ + r′1

= 2Reσ + 2κΛ(ξ)−ρ − 3

2
γ + r2.

So, if we let r3 = 2κΛ−1 + r2 ∈ S−1
ρ,Λ, then we get

λ = 2Reσ − 3

2
γ + r3.
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But
2Reσ = σ + σ = σ + σ∗ + r4

for some r4 in S−ρ
ρ,Λ. Therefore

λ = σ + σ∗ − 3

2
λ+ r5

for some r5 in S−ρ
ρ,Λ. Thus,

σ + σ∗ = λ+
3

2
γ + r5.

Now, for all φ in S,

2Re (Tσφ, φ) = (Tσφ, φ) + (T ∗
σφ, φ) = (Tσ+σ∗φ, φ)

= (Tλφ, φ) +
3

2
γ∥φ∥20,2,Λ + (Tr5φ, φ)

≥ γ∥φ∥20,2,Λ +
{γ

2
∥φ∥20,2,Λ − ∥Tr5φ∥ 1

2
,2,Λ∥φ∥− 1

2
,2,Λ

}
.

Using the L2-boundedness of (ρ,Λ)-pseudo-differential operators, we get a
positive constant µ such that

2Re (Tσφ, φ) ≥ γ∥φ∥20,2,Λ +
{γ

2
∥φ∥20,2,Λ − µ∥φ∥2− 1

2
,0,Λ

}
, φ ∈ S.

But

µ∥φ∥2− 1
2
,0,Λ

=

∫
Rn

µΛ(ξ)−1|φ̂(ξ)|2 dξ = I + J,

where

I =

∫
µΛ(ξ)−1≤ γ

2

µΛ(ξ)−1|φ̂(ξ)|2dξ

and

J =

∫
µΛ(ξ)−1≥ γ

2

µΛ(ξ)−1|φ̂(ξ)|2dξ.

Obviously,

I ≤ γ

2

∫
Rn

|φ̂(ξ)|2dξ =
γ

2
∥φ∥20,2.
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To estimate J , we note that

µΛ(ξ)−1 ≥ γ

2
⇒ Λ(ξ) ≤ 2µ

γ
.

So, for µΛ(ξ)−1 ≥ γ
2
, we get for every nonnegative real number s with s ≥ ρ

2
.

µΛ(ξ)−1 = µΛ(ξ)2ρs−1Λ(ξ)−2ρs

≤ µ

(
2µ

γ

)2ρs−1

Λ(ξ)−2ρs.

So, for every nonnegative real number s with s ≥ ρ
2
,

J ≤ µ

(
2µ

γ

)2ρs−1 ∫
Rn

Λ(ξ)−2ρs|φ̂(ξ)|2dξ = C ′
s∥φ∥2−ρs,2,Λ,

where C ′
s = µ

(
2µ
γ

)2ρs−1

. Therefore

2Re (Tσφ, φ) ≥ γ∥φ∥20,2,Λ − C ′
s∥φ∥2−ρs,2,Λ, φ ∈ S,

and the theorem follows with C0 =
γ
2
and Cs =

C′
s

2
.

3 Poisson’s Equations

Let σ ∈ Sm
ρ,Λ, m > 0. Let f ∈ L2(Rn). Then a function u ∈ L2(Rn) is said

to be a weak solution of the Poisson equation

Tσu = f (3.1)

on Rn if u ∈ D(Tσ,1) and Tσ,1u = f. A function u ∈ L2(Rn) is said to be a
strong solution of the Poisson equation (3.1) if u ∈ D(Tσ,0) and Tσ,0u = f. It
is obvious that every weak solution is a strong solution. By Theorem 1.18,
weak solutions and strong solutions are the same if Tσ is a (ρ,Λ)-elliptic
pseudo-differential operator.

The following theorem is a well-known result that follows from the cor-
responding result in functional analysis. See, for example, Theorem 16.3,
in [11].
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Theorem 3.1 Let σ ∈ Sm
ρ,Λ, m > 0. Let f ∈ L2(Rn). Then the Poisson

equation (3.1) has a weak solution u in L2(Rn) if and only if there exists a
positive constant C such that

|(f, φ)| ≤ C∥T ∗
σφ∥2, φ ∈ S,

where

(f, φ) =

∫
Rn

f(x)φ(x) dx.

The focus from now on is on strong solutions in L2(Rn) of Poisson’s
equations modelled by (ρ,Λ)-elliptic pseudo-differential operators.

Theorem 3.2 Let σ ∈ S2m
ρ,Λ, m > 0, be a (ρ,Λ)-elliptic symbol such that

there exists a positive constant C for which

Re (Tσφ, φ) ≥ C∥φ∥2m,2,Λ, φ ∈ S. (3.2)

Then for every function f in L2(Rn), the Poisson equation

Tσu = f

has a unique strong solution u in L2(Rn).

Proof Using the Sobolev embedding theorem, (3.2), and the Cauchy–
Schwarz inequality, there exists a positive constant C ′ such that for all
functions φ in S,

∥φ∥22 ≤ C ′∥φ∥2m,2,Λ ≤ C ′

C
∥φ∥2∥T ∗φ∥2

and hence

∥φ∥2 ≤
C ′

C
∥T ∗φ∥2.

So, for all functions f in L2(Rn),

|(f, φ)| ≤ ∥f∥2∥φ∥2 ≤
C ′

C
∥f∥2∥T ∗φ∥2, φ ∈ S.

Then by Theorem 3.1, the Poisson equation

Tσu = f
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on Rn has a weak solution u in L2(Rn). By (ρ,Λ)-ellipticity, u is a strong
solution in L2(Rn). To prove uniqueness, we first note that by (3.2) and a
density argument,

Re (Tσu, u) ≥ C∥u∥2m,2,Λ, u ∈ H2m,2
Λ .

Let v be another strong solution in L2(Rn) of the Poisson equation

Tσu = f

on Rn. Then

∥u− v∥2m,2,Λ ≤ 1

C
Re (Tσ(u− v), u− v) = 0.

Therefore u = v and this completes the proof of the theorem. 2

4 Strongly Continuous One-Parameter

Semigroups

Let us first prove the following theorem.

Theorem 4.1 Let σ ∈ S2m,2
ρ,Λ , m > 0, be an elliptic symbol such that we can

find a positive constant C and a constant λ0 for which

Re (−Tσφ, φ) ≥ C∥φ∥2m,2,Λ − λ0∥φ∥22, φ ∈ S. (4.1)

Let λ > λ0. Then for every f ∈ L2(Rn), there exists a unique solution
u ∈ H2m,2

Λ of the equation

(λI − Tσ,0)u = f,

where I is the identity operator on L2(Rn). Moreover,

∥(λI − Tσ,0)u∥2 ≥ (λ− λ0)∥u∥2, u ∈ H2m,2
ρ,λ . (4.2)

Proof By (4.1), we get

Re ((λI − Tσ)φ, φ) = Re ((λ0I − Tσ)φ, φ) + (λ− λ0)∥φ∥22
≥ C∥φ∥2m,2,Λ + (λ− λ0)∥φ∥22
≥ C∥φ∥2m,2,Λ (4.3)

16



and
Re ((λI − Tσ)φ, φ) ≥ (λ− λ0)∥φ∥22 (4.4)

for all functions φ in S. By (4.3), Theorem 1.15, and Theorem 3.2, we
conclude that the equation

(λI − Tσ,0)u = f

on Rn has a unique solution u in H2m,2
Λ . Moreover, by (4.4) and a limiting

argument,
∥(λI − Tσ,0)u∥2 ≥ (λ− λ0)∥u∥2, u ∈ H2m,2

Λ .

2

We conclude with the following theorem.

Theorem 4.2 Let σ ∈ S2m
ρ,Λ, m > 0, be a strongly (ρ,Λ)-elliptic symbol.

Then −Tσ,0 is the infinitesimal generator of a strongly continuous one-
parameter semigroup of bounded linear operators on L2(Rn).

Proof By G̊arding’s inequality, we can find a positive constant C and a
constant Cs for every real number s in

[
ρ
2
,∞

)
such that

Re (Tσφ, φ) ≥ C∥φ∥2m,2,Λ − Cs∥φ∥2m−ρs,Λ, φ ∈ S.

By choosing s such that ρs = m, we get a constant λ0 such that (4.1)
is satisfied. By Theorem 4.1, the resolvent set of the pseudo-differential
operator −Tσ,0 is the same as (λ0,∞) and

∥(−Tσ,0 − λI)−1∥∗ ≤ (λ− λ0)
−1, λ > λ0,

where ∥ ∥∗ denotes the norm in the C∗-algebra of bounded linear operators
on L2(Rn). Hence

∥(−Tσ,0 − λI)−n∥∗ ≤ (λ− λ0)
−n, n = 1, 2, . . . .

The Hille–Yosida–Phillips theorem then completes the proof. 2

The Hille–Yosida–Phillips theorem is one of the basic theorems in one-
parameter semigroups of bounded linear operators on Banach spaces. We
state it precisely in the followong theorem.
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Theorem 4.3 Let A be a closed linear operator from a complex Banach
space X into X with dense domain D(A). Then A is the infinitesimal gen-
erator of a strongly continuous one-parameter semigroup of bounded linear
operators on X if and only if we can find a positive number M and a real
number ω such that

{λ ∈ R : λ > ω} ⊆ ρ(A)

and

∥(A− λI)−n∥ ≤ M

(λ− ω)n

for all λ ∈ (ω,∞) and all positive integers n, where ρ(A) is the resolvent
set of A, I is the identity operator on X and ∥(A− λI)−n∥ is the operator
norm of the nth power of (A− λI)−1.

See, for instance, [4, 5, 9, 11] in this connection.

5 Initial Value Problems for Heat Equations

Let us now consider the following initial value problem for the heat equation
governed by a strongly (ρ,Λ)-elliptic pseudo-differential operator, i.e., ∂u

∂t
= −Tσ,0(u(t)), t > 0,

u(0) = f,
(5.1)

where σ ∈ S2m
ρ,Λ is a strongly (ρ,Λ)-elliptic symbol with m > 0, f is a given

function in L2(Rn), and u : [0,∞) → L2(Rn) is to be determined.
A solution u of the initial value problem (5.1) is a continuous function

u : [0,∞) → L2(Rn) such that u is continuously differentiable on (0,∞) and
satisfies both equations in (5.1). Using Theorem 4.2 ensuring the existence
of a strongly continuous one-parameter semigroup generated by −Tσ,0 and
Theorem 1.3 in Chapter 4 of [9], we have the following theorem.

Theorem 5.1 The initial value problem (5.1) has a unique solution u if
and only if f ∈ H2m,2

Λ . Moreover,

u(t) = e−Tσ,0tf, t ∈ [0,∞).

18



If f ∈ L2(Rn) \H2m,2
Λ , then the function u : [0,∞) → L2(Rn) defined by

u(t) = e−Tσ,0tf, t ∈ [0,∞), (5.2)

is merely a mild solution of the initial value problem (5.1) expressed in the
following theorem. Briefly put, the function (5.2) is not a solution of the
initial value problem (5.1) in the sense that we want it to be.

Theorem 5.2 Let {T (t) : t > 0} be the strongly continuous one-parameter
semigroup of bounded linear operators on L2(Rn) generated by −Tσ,0. Then
the function u : [0,∞) → L2(Rn) defined by

u(t) = T (t)f, t ≥ 0,

is a mild solution of the initial value problem (5.1) in the sense that there
exists a sequence {fk}∞k=1 in H2m,2

Λ such that fk → u(0) in L2(Rn) and
T (·)fk → u in L2(Rn) uniformly on every compact subset of [0,∞) as k →
∞.

Proof Since H2m,2
Λ is dense in L2(Rn), there exists a sequence {fk}∞k=1 in

H2m,2
Λ such that fk → f in L2(Rn) as k → ∞. So, fk → u(0) in L2(Rn) as

k → ∞. By Theorem 2.2 in Chapter 1 of [9], we can find constants ω and
M with ω ≥ 0 and M ≥ 1 such that

∥T (t)∥∗ ≤ Meωt, t ∈ [0,∞).

Let K be a compact subset of [0,∞). Then for all t in K,

∥T (t)fk−u(t)∥2 = ∥T (t)fk−T (t)f∥2 ≤ ∥T (t)∥∗∥fk−f∥2 ≤ Meωt∥fk−f∥2.

Let
S = sup

t∈K
eωt.

Then
∥T (t)fk − T (t)f∥2 ≤ MS∥fk − f∥2 → 0

for all t ∈ K as k → ∞. Therefore

T (·)fk → u

in L2(Rn) uniformly on every compact subset of [0,∞) as k → ∞. This
completes the proof that u : [0,∞) → L2(Rn) is a mild solution of the initial
value problem (5.1). 2
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Remark 5.3 It is clear that the proof of Theorem 5.2 is independent of
the choice of the sequence {fk}∞k=1 in H2m,2

Λ . So the mild solution is unique.
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