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Abstract. We give necessary and sufficient conditions on the symbols for which
the corresponding pseudo-differential operators on the affine group are Hilbert–
Schimdt operators. We also give a characterization of trace class pseudo-differential
operators on the affine group. A trace formula for these trace class operators are
also obtained. We have also obtained the L2 boundedness of the Weyl transforms
on the affine group.

1. Introduction

The classical pseudo-differential operator Tσ associated to a measurable function
σ on Rn × Rn is defined by

(Tσϕ)(x) = (2π)−n/2
∫
Rn
eix·ξσ(x, ξ)ϕ̂(ξ)dξ, x ∈ Rn,

for all Schwartz functions ϕ on Rn, provided that the integral exists. The function ϕ̂
in the above formula is the Fourier transform of the function ϕ defined by

ϕ̂(ξ) = (2π)−n/2
∫
Rn
e−ix·ξϕ(x) dξ, ξ ∈ Rn.

The genesis of pseudo-differential operators defined above is based on the Fourier
inversion formula for the Fourier transform and is done by inserting a symbol on
the phase space Rn × Rn in the Fourier inversion formula. Here, the second Rn in
the product Rn × Rn is the dual group of Rn. Using this idea, the study of pseudo-
differential operators has been extended to other groups where the dual group and
the Fourier inversion formula are explicitly known. See, for instance, [2, 3, 5, 6, 11],
among others.

For any locally compact and Hausdorff group G, the set of equivalence classes of
strongly continuous, irreducible and unitary representations is known as the dual of

G and is denoted by Ĝ. If G is noncompact then the dual may be infinite-dimensional
as in the case of Rn and the Heisenberg group. In general, the Fourier transform of

any function in L1(G) is an operator-valued function on the dual Ĝ and the symbol
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of the corresponding pseudo-differential operator is an operator-valued function on

G× Ĝ. These operators have many applications in quantum physics [7].

The aim of this paper is to extend the analysis of pseudo-differential operators on
the affine group studied in [1]. In Section 2 we recall the basics of the affine group
and the Fourier analysis on the affine group. We recall the L2-boundedness result of
pseudo-differential operators on the affine group and prove the equality of pseudo-
differential operators with equal symbols in Section 3. In Section 4 we characterize
the symbols for which these operators are Hilbert–Schimdt operators. In Section 5
we obtain the trace formula for the trace class pseudo-differential operators on the
affine group. We also give the Fourier–Wigner tranansforms and the Weyl transforms
in Section 6.

2. The Affine Group

Let U be the upper half plane defined by

U = {(b, a) : b ∈ R, a > 0}.

Then U is group with the binary operation · defined by

(b, a) · (c, d) = (b+ ac, ad) (2.1)

for all (b, a), (c, d) ∈ U . With respect to the multiplication · given in (2.1), one can
show that U is a non-abelian group. It can be shown that (− b

a
, 1
a
) is the inverse

element of (b, a) and (0, 1) is the identity element in U . The left and right Haar
measures on U are given by dµ = db da

a2
and dν = db da

a
, respectively.

With respect to the above multiplication · defined by (2.1), U is also a locally
compact and Hausdroff group on which the left Haar measure is different from the
right Haar measure. Thus, U is a non-unimodular group, which is known as the affine
group.

Let H2
+(R) be the subspace of L2(R) defined by

H2
+(R) = {f ∈ L2(R) : supp(f̂) ⊆ [0,∞)},

where supp(f̂) is the set of all x ∈ R for which there is no neighborhood of x on

which f̂ is equal to zero almost everywhere. Similarly, H2
−(R) ⊆ L2(R) is defined by

H2
−(R) = {f ∈ L2(R) : supp(f̂) ⊆ (−∞, 0]}.

It can be proved that H2
+(R) and H2

−(R) are closed subspace of L2(R). The spaces
H2

+(R) and H2
−(R) are known as the Hardy space and the conjugate Hardy space,

respectively.

Let U(H2
±(R)) be the set of all unitary operators on H2

±(R). It is a group with
respect to the composition of mappings. Then the unitary and irreducible repre-
sentations of U on H±(R) are given by the mapping π± : U → U(H2

±(R)) defined
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as

(π±(b, a)f)(x) =
1√
a
f

(
x− a
b

)
, x ∈ R,

for all points (b, a) in U and all functions f ∈ H2
±(R). More details on the affine group

and its representations can be found in [1, 9, 10], among others.
To describe the Fourier analysis on the affine group, we look at the equivalent

representations of π± : U → U(H2
±(R)), denoted by ρ± : U → U(L2(R±)), given by

(ρ+(b, a)u)(s) = a1/2e−ibsu(as), s ∈ R+ = [0,∞),

for all u ∈ L2(R+), and

(ρ−(b, a)u)(s) = a1/2e−ibsv(as), s ∈ R− = (−∞, 0],

for all v ∈ L2(R−). We recall the Duflo-Moore operators D± [4], which are unbounded
operators on L2(R±), defined by

(D±ϕ)(s) = |s|1/2ϕ(s), s ∈ R±.

Then for all f ∈ L2(U), the Fourier transform f̂ of f is the function on {ρ+, ρ−}
defined by

(f̂(ρ±)ψ)(x) =

∫ ∞
0

∫ ∞
−∞

f(b, a)(ρ±(b, a)D±ψ)(x)
db da

a2
, x ∈ R±,

for all ψ ∈ L2(R±). Then the Plancheral formula states that

||f̂(ρ+)||2S2 + ||f̂(ρ−)||2S2 = ||f ||2L2(U) (2.2)

for all f ∈ L2(U), where || ||S2 is the Hilbert–Schimdt norm. The Fourier inversion
formula states that for all f ∈ L2(U), we get

f(b, a) =

√
a

2π
tr(D+f̂(ρ+)ρ+(b, a)∗) +

√
a

2π
tr(D−f̂(ρ−)ρ−(b, a)∗)

for all (b, a) ∈ U.
Denoting {ρ+, ρ−} by {±}, we consider the mappings σ : U × {±} → B(L2(R)),

where B(L2(R)) is the C∗ algebra of all bounded linear operators on L2(R). Then for
all f ∈ L2(U), the pseudo-differential operator Tσ on the affine group U is defined by

(Tσf)(b, a) =

√
a

2π

∑
j=±

tr(σ(b, a, j)Dj f̂(ρj)ρj(b, a)∗), (b, a) ∈ U. (2.3)

Now, after a simple calculation, the Fourier transform of any function f ∈ L2(U) can
be expressed as

(f̂(ρ+)ψ)(x) =

∫ ∞
0

K+
f (x, y)ψ(y) dy

for all ψ ∈ L2(R+), where

K+
f (x, y) =

√
x

y

∫ ∞
−∞

f
(
b,
y

x

)
e−ibxdb =

√
2π

√
x

y
(F1f)

(
x,
y

s

)
, 0 < x, y <∞, (2.4)

and

(f̂(ρ−)ψ)(x) =

∫ 0

−∞
K−f (x, y)ψ(y) dy
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for all ψ ∈ L2(R−), where

K−f (x, y) =
√

2π

√
|x|
|y|

(F1f)
(
x,
y

s

)
, −∞ < x, y < 0. (2.5)

Now, for f ∈ L2(U), the operator f̂(ρ) : L2(R)→ L2(R) is defined by

f̂(ρ)ψ = f̂(ρ+)ψ+ + f̂(ρ−)ψ−, (2.6)

where

ψ± = ψχR± .

Here,

χR±(s) =

{
1, s ∈ R±,
0, s /∈ R±.

Then we recall the following result from [1].

Theorem 2.1. Let f ∈ L2(U). Then for all ψ ∈ L2(R),

f̂(ρ)ψ = Wσfψ,

where

σf (x, y) =
1√
2π

(F2TKf )(x, y),

Kf (x, y) =


K+
f (x, y), x > 0, y > 0,

K−f (x, y), x < 0, y < 0,

0, otherwise.

(2.7)

Moreover,

σ+
f (x, y) =

1√
2π

(F2TK
+
f )(x, y),

σ−f (x, y) =
1√
2π

(F2TK
−
f )(x, y),

where T is the twisting operator defined by

(Tf)(x, y) = f
(
x+

y

2
, x− y

2

)
, x, y ∈ R. (2.8)

Moreover, it has been shown in [1] that the Fourier transform on the affine group
is a Weyl transform on L2(R).

Theorem 2.2. Let f ∈ L2(U). Then for all ϕ ∈ L2(R),

f̂(ρ)ϕ = Wσfϕ, ϕ ∈ L2(R),

where

σf (x, ξ) = (2π)−1/2(F2TKf )(x, ξ), x, ξ ∈ R,
where T is the twisting operator defined by (2.8).
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3. L2-Boundedness

In this section we first recall the from [1] the L2-boundedness of pseudo-differential
operators on U and prove that under suitable conditions, two symbols giving the
same pseudo-differential operator are equal.

Theorem 3.1. Let σ : U × {±} → S2 be such that∑
j=±

∫ ∞
0

∫ ∞
−∞
||σ(b, a, j)Dj||2S2

db da

a
<∞.

Then Tσ : L2(U)→ L2(U) is a bounded linear operator. Moreover,

||Tσ||∗ ≤

{∑
j=±

∫ ∞
−∞
||σ(b, a, j)Dj||2S2

db da

a

}1/2

.

Next, we prove the theorem for equality of symbols.

Theorem 3.2. Let σ : U × {±} → S2 be an operator-valued symbol such that∑
j=±

∫ ∞
0

∫ ∞
−∞
‖σ(b, a, j)Dj‖2s2

db da

a
<∞ (3.1)

and the mapping

U × {±} 3 (b, a, j) 7→ ρ∗±(b, a)σ(b, a,±) ∈ S2

is weakly continuous. Then Tσf = 0 for all f ∈ L2(U) only if σ(b, a,±) = 0 for
almost all (b, a,±) ∈ U × {±}.

Proof. We know that for all f ∈ L2(U),

(Tσf)(b, a)

=

√
a

2π
[tr(σ(b, a,+)D+f̂(ρ+)ρ+tr(σ(b, a,−)D−f̂(ρ−)ρ−(b, a)∗)] (3.2)

and

f(b, a) =

√
a

2π
tr(D+f̂(ρ+)ρ+(b, a)∗) +

√
a

2π
tr(D−f̂(ρ−)ρ−(b, a)∗) (3.3)

for all (b, a) in U . Let (b, a) ∈ U . Then we define the function fb,a in L2(U) by

f̂b,a(ρ+) = (σ(b, a,+)D+)∗ρ+(b, a) (3.4)

and

f̂b,a(ρ−) = (σ(b, a,−)D−)∗ρ−(b, a). (3.5)

Now, by the Fourier inversion formula,

fb,a(c, d) =

√
d

2π
tr(D+f̂(b,a)(ρ+)ρ+(c, d)∗) +

√
d

2π
tr(D−f̂(b,a)(ρ−)ρ−(c, d)∗) (3.6)
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for all (c, d) in U . Then by the definition of pseudo-differential operators, we get

(Tσfb,a)(c, d) =

√
d

2π
tr(σ(c, d,+)D+f̂b,a(ρ+)ρ+(c, d)∗)

+

√
d

2π
tr(σ(c, d,−)D−f̂b,a(ρ−)ρ−(c, d)∗)

for all (c, d) in U . So, for all (c, d) ∈ U,

(Tσfb,a)(c, d) =

√
d

2π
tr(σ(c, d,+)D+(σ(b, a,+)D+)∗ρ+(b, a)ρ+(c, d)∗)

+

√
d

2π
tr(σ(c, d,−)D−(σ(b, a,−)D−)∗ρ−(b, a)ρ−(c, d)∗).

Since the mapping U × {±} 3 (b, a, j) 7→ ρ∗j(b, a)σ(b, a,±)D± ∈ S2 is weakly contin-
uous, it follows that as (c, d)→ (b, a) we have

tr(σ(c, d,+)D+(σ(b, a,+)D+)∗ρ+(b, a)ρ+(c, d)∗)

+tr(σ(c, d,−)D−(σ(b, a,−)D−)∗ρ−(b, a)ρ−(c, d)∗)

−→
tr(σ(b, a,+)D+(σ(b, a,+)D+)∗ρ+(b, a)ρ+(b, a)∗)

+tr(σ(b, a,−)D−(σ(b, a,−)D−)∗ρ−(b, a)ρ−(b, a)∗)

=

tr(σ(b, a,+)D+(σ(b, a,+)D+)∗)

+tr(σ(b, a,−)D−(σ(b, a,−)D−)∗)

and hence

(Tσfb,a)(b, a)

=

√
a

2π
[tr(σ(b, a,+)D+(σ(b, a,+)D+)∗) + tr(σ(b, a,−)D−(σ(b, a,−)D−)∗)]

= ‖σ(b, a,+)D+‖2s2 + ‖σ(b, a,−)D−‖2s2 = 0

for all (b, a) in U . Thus, ‖σ(b, a,±)D±‖2s2 = 0 and we get σ(b, a,±)D± = 0 for almost
all (b, a) ∈ U. Since D± is injective, σ(b, a,±) = 0 for almost all (b, a) ∈ U. �

4. Hilbert–Schimdt Pseudo-Differential Operators

In this section we first recall the twisting operator [8] and then characterize the
Hilbert–Schimdt pseudo-differential operators on the affine group U . Let T : L2(R×
R)→ L2(R× R) be defined by

(Tf)(x, y) = f
(
x+

y

2
, x− y

2

)
, x, y ∈ R.

Then T : L2(R×R)→ L2(R×R) is a bounded linear operator and is usually called
the twisting operator. To get a formula for the adjoint T ∗ of T , we note that for all
functions f and g in L2(U),

(Tf, g)L2(R×R) = (f, T ∗g)L2(R×R).
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Now,

(f, T ∗g)L2(R×R) =

∫ ∞
−∞

∫ ∞
−∞

f
(
x+

y

2
, x− y

2

)
g(x, y)dx dy.

Putting (x+ y
2
, x− y

2
) = (ξ, η), we get

(f, T ∗g)L2(R×R) =

∫ ∞
−∞

∫ ∞
−∞

f(ξ, η)g

(
ξ + η

2
, ξ − η

)
dξ dη, (4.1)

which is the same as

(f, T ∗g)L2(R×R) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)g

(
x+ y

2
, x− y

)
dx dy. (4.2)

Hence for all g ∈ L2(R× R),

(T ∗g)(x, y) = g

(
x+ y

2
, x− y

)
, x, y ∈ R,

which gives

(TT ∗g)(x, y) = (T ∗Tg)(x, y) = g(x, y), x, y ∈ R. (4.3)

Theorem 4.1. Let σ : U × {±} → S2 be defined by

σ(b, a, j)Dj = ρj(b, a)Wτα(b,a) , j = ±, (4.4)

where

τα(b,a)(x, ξ) = F−12 TKα(b,a)(x, ξ) (4.5)

and

Kα(b,a)(x, ξ) =


√
x
ξ
F−11 α(b, a)

(
x, ξ

x

)
, x > 0, ξ > 0,√

|x|
|ξ| F

−1
1 α(b, a)

(
x, ξ

x

)
, x < 0, ξ < 0

0, otherwise,

, (4.6)

and the mapping α : U → L2(U) satisfies the condition

1

4π2

∫
U

‖α(b, a)‖2s2
dbda

a
<∞.

Then Tσ : L2(U)→ L2(U) is a Hilbert–Schmidt operator and vice-versa.

Proof. We know that the pseudo-differential operator Tσ on C∞0 (U) is defined by

(Tσf)(b, a) =

√
a

2π

∑
j=±

tr(σ(b, a, j)Dj f̂(ρj)ρj(b, a)∗)
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for all (b, a) ∈ U. Now, using the Parseval identity and the fact that T is a unitary
operator, we get

tr(ρ+(b, a)∗σ(b, a,+)D+f̂(ρ+))

= tr(Wτα(b,a)Wσ+
f

)

=

∫ ∞
−∞

∫ ∞
−∞

σ+
f (x, ξ)τα(b,a)(x, ξ)dx dξ

=

∫ ∞
−∞

∫ ∞
−∞
F2TK

+
f (x, ξ)F−12 TKα(b,a)(x, ξ)dx dξ

=

∫ ∞
−∞

∫ ∞
−∞

TK+
f (x, ξ)TKα(b,a)(x, ξ)dx dξ

=

∫ ∞
−∞

∫ ∞
−∞

K+
f (x, ξ)Kα(b,a)(x, ξ)dx dξ

=

∫ ∞
0

∫ ∞
0

√
x

ξ
(F1f)

(
x,
ξ

x

) √
x

ξ
F−11 α(b, a)

(
x,
ξ

x

)
dx dξ

=

∫ ∞
0

∫ ∞
0

x

ξ2
(F1f)

(
x,
ξ

x

)
F−11 α(b, a)

(
x,
ξ

x

)
dx dξ

=

∫ ∞
0

∫ ∞
0

(F1f)(x, t)F−11 α(b, a)(x, t)
dx dt

t2
(4.7)

for all (b, a) ∈ U. Similarly,

tr(ρ−(b, a)∗σ(b, a,−)D−f̂(ρ−)) =

∫ 0

−∞

∫ ∞
0

(F1f)(x, t)F−11 α(b, a)(x, t)
dx dt

t2
(4.8)

for all (b, a) ∈ U . Adding the two equation (4.7) and (4.8),

(Tσf)(b, a) =

√
a

2π

∫ ∞
0

∫ ∞
0

(F1f)(x, t)F−11 α(b, a)(x, t)
dx dt

t2

+

√
a

2π

∫ 0

−∞

∫ ∞
0

(F1f)(x, t)F−11 α(b, a)(x, t)
dx dt

t2

=

√
a

2π

∫ ∞
−∞

∫ ∞
0

(F1f)(x, t)F−11 α(b, a)(x, t)
dx dt

t2

=

√
a

2π

∫ ∞
0

∫ ∞
−∞

f(x, t)α(b, a)(x, t)
dx dt

t2

for all (b, a) ∈ U. Then the kernel k of Tσ is the function on U × U given by

k(b, a, x, t) =

√
a

2π
α(b, a)(x, t), (b, a), (x, t) ∈ U. (4.9)
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Now, ∫ ∞
0

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞
|k(b, a, x, t)|2db da

a2
dx dt

t2

=

∫ ∞
0

∫ ∞
−∞

∫ ∞
−0

∫ ∞
−∞

a

4π2
|α(b, a)(x, t)|2db da

a2
dx dt

t2

=
1

4π2

∫ ∞
0

∫ ∞
−∞
‖α(b, a)‖2L2(U)

db da

a
<∞. (4.10)

Thus, Tσ : L2(U) → L2(U) is a Hilbert–Schmidt operator. Conversely, let Tσ :
L2(U)→ L2(U) be a Hilbert–Schmidt operator. Then

(Tσf)(b, a) =

∫ ∞
0

∫ ∞
−∞

α(b, a, x, t)f(x, t)
dx dt

t2
, (b, a) ∈ U, (4.11)

for all f ∈ L2(U), where α ∈ L2(U ×U). Let β : U → L2(U) be the mapping defined
by

β(b, a)(x, t) =

√
a

2π
α(b, a, x, t), (b, a), (x, t) ∈ U.

Reversing the proof of the sufficiency with β instead of α, we get

(Tσf)(b, a) =

√
a

2π
tr(Wτβ(b,a)W

+
σf

) +

√
a

2π
tr(Wτβ(b,a)W

−
σf

), (b, a) ∈ U, (4.12)

with τβ(b,a) = F−12 TKβ(b,a), where T and K are as defined in the statement of the
theorem. Using the assumption that Tσ is a Hilbert–Schimdt operator, it is immediate
that ∫ ∞

0

∫ ∞
−∞
||β(b, a)||S2

db da

a2
<∞.

But any pseudo-differential operator on the affine group is of the form,

(Tσf)(b, a) =

√
a

2π
tr
∑
j=±

(ρj(b, a)∗σ(b, a, j)Dj f̂(ρj)) (4.13)

for all (b, a) ∈ U Subtracting (4.13) from (4.12), we get
√
a

2π
tr
∑
j=±

(ρj(b, a)∗σ(b, a, j)Dj f̂(ρ+)−Wτβ(b,a)Wσjf
) = 0, (b, a) ∈ U,

This gives
√
a

2π
tr
∑
j=±

[(ρj(b, a)∗σ(b, a,+)Dj −Wτβ(b,a))f̂(ρj) = 0, (b, a) ∈ U.

By Theorem (3.2), we get for all (b, a) ∈ U,
ρ+(b, a)∗σ(b, a,+)D+ −Wτβ(b,a) = 0

and
ρ−(b, a)∗σ(b, a,−)D− −Wτβ(b,a) = 0.

So, for all (b, a) ∈ U,
ρ+(b, a)∗σ(b, a,+)D+ = Wτβ(b,a)

9
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and

ρ−(b, a)∗σ(b, a,−)D− = Wτβ(b,a) .

Hence

σ(b, a,±)D± = ρ±(b, a)Wτβ(b,a)

for all (b, a) ∈ U . This completes the proof. �

5. Trace class Pseudo-Differential Operators

Theorem 5.1. Let β ∈ L2(U × U) be such that∫ ∞
0

∫ ∞
−∞
|β(b, a, b, a)|db da

a2
<∞.

Let σ : U × {±} → S2 be the symbol defined in Theorem 4.1 with

α(b, a)(x, t) =
2π√
a
β(b, a, x, t), (b, a), (x, t) ∈ U.

Then Tσ : L2(U)→ L2(U) is a trace class operator and

tr(Tσ) =

∫ ∞
0

∫ ∞
−∞

β(b, a, b, a)
db da

a2
.

Proof. We begin with the familiar formula

(Tσf)(b, a) =

√
a

2π
tr
∑
j=±

σ(b, a, j)Dj f̂(ρj)ρj(b, a)∗), (b, a) ∈ U,

for all f ∈ L2(U). By the same technique used in the proof of Theorem 4.1, we get

(Tσf)(b, a) =

√
a

2π

∫ ∞
0

∫ ∞
−∞

f(x, t)α(b, a)(x, t)
dx dt

t2
, (b, a) ∈ U,

for all f ∈ L2(U). The kernel k of Tσ is of the form

k(b, a, x, t) =

√
a

2π
α(b, a)(x, t), (b, a), (x, t) ∈ U.

Since ∫ ∞
0

∫ ∞
−∞
|k(b, a, b, a)|db da

a2
=

∫ ∞
0

∫ ∞
−∞

√
a

2π
|α(b, a)(b, a)|db da

a2

=

∫ ∞
0

∫ ∞
−∞
|β(b, a, b, a)|db da

a2
<∞,

it follows that Tσ is a trace class operator and

tr(Tσ) =

∫ ∞
0

∫ ∞
−∞

β(b, a, b, a)
db da

a2
.

�
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6. Fourier–Wigner Transforms and Weyl Transforms

Let (c, d) = (b, a) · (b, a), where (b, a) ∈ U and · is the binary operation in affine
group. Then

(c, d) = (b+ ab, a2) = (c, d)

giving

a =
√
d

and

b =
c

1 +
√
d
.

So, we can define the squre root (c, d)1/2 of (c, d) as

(c, d)1,2 = (b, a) =

(
c

1 +
√
d
,
√
d

)
.

Let f, g ∈ L2(U). Then we define the Fourier–Wigner transform V (f, g) of f and g
by

(V (f, g)(±, ξ))Φ)(s) =

∫ ∞
0

∫ ∞
−∞

f(ξ1/2·z)g(z−1 · ξ1/2)(ρ±(z)D±Φ)(s)
dx dy

y2
, s ∈ R±,

(6.1)
which is the same as

(V (f, g)(ρ±, ξ)Φ
)
(s) = (((FKξ)(ρ±)Φ)(s), s ∈ R±, (6.2)

for all ξ ∈ (b, a) ∈ U , Φ ∈ L2(R±), z = (x, y) ∈ U and

Kξ(z)f(ξ1/2 · z)g(z−1 · ξ1/2), z ∈ U.

Let f, g ∈ L2(U). Then we define the Wigner transform W (f, g) of f and g on U × Û
by

W (f, g)(z, ρ±) = (F2F−11 V (f, g))(z, ρ±), (z, ρ±) ∈ U × Û , (6.3)

where F−11 V (f, g) is the inverse Fourier transform of V (f, g) with respect to the first
variable evaluated at z = (x, y) ∈ U and F2V (f, g) is the Fourier transform of V (f, g)
with respect to the second variable evaluated at ρ±. Therefore

(W (f, g)(z, ρ±)Φ)(s) =

∫ ∞
0

∫ ∞
−∞

f(ξ1/2 · z)g(z−1 · ξ1/2)(ρ±(ξ)D±Φ)(s)
db da

a2
(6.4)

for all z, ξ ∈ U,Φ ∈ L2(R±) and s ∈ R±. Let L2(Û × U, S2) be the space of all

measurable functions K : Û × U −→ S2 such that

K(ρ±, z) ∈ S2(L2(R±))

and

‖K‖L2(Û×U,S2) =

∫ ∞
0

∫ ∞
−∞

(‖K(ρ+, z)‖2S2
+

+ ‖K(ρ−, z)‖2S2−
)
dx dy

y2
.

An inner product in L2(Û × U, S2) defined by

(K,M)L2(Û×U,S2) =

∫ ∞
0

∫ ∞
−∞

∑
j=±

tr(K(ρj, z)M(ρj, z)
∗)
dx dy

y2
. (6.5)

11
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for all K and M in L2(Û × U, S2). Similarly, let L2(U × Û , S2) be the space of all

measurable functions K : U × Û −→ S2 such that K(z, ρ±) ∈ S2(L2(R±)) and

‖K‖L2(U×Û ,S2) =

∫ ∞
0

∫ ∞
−∞

(‖K(z, ρ+)‖2S2
+

+ ‖K(z, ρ−)‖2S2−
)
dx dy

y2
.

An inner product in L2(U × Û , S2) defined by

(K,M)L2(U×Û ,S2) =

∫ ∞
0

∫ ∞
−∞

∑
j=±

tr(K(z, ρj)M(z, ρj))
dx dy

y2
(6.6)

for all K and M in L2(U × Û , S2). Let L2(Û , S2) be space of all meaurable functions

F : Û → S2 such that F (ρ±) ∈ S2(L2(R±). It can be seen that L2(Û × S2) is a
Hilbert space with inner product ( , )L2(Û×S2) gven by

(F,G)L2(Û ,S2) = tr(F (ρ+)G(ρ+)∗) + tr(F (ρ−)G(ρ−)∗) (6.7)

for all F and G in L2(Û , S2). Also, L2(Û , S2) is a Hilbert space in which the inner

product is given by (6.7) for all F,G ∈ L2(Û , S2). Hence for all F in L2(Û , S2),

‖F‖2
L2(Û ,S2)

= ‖F (ρ+)‖2S2
+

+ ‖F (ρ−)‖2S2−
. (6.8)

Then by 2.2, we have for all f ∈ L2(U),

‖f‖2L2(U) = ‖f̂‖L2(Û ,S2).

Theorem 6.1. Let f1, f2, g1, g2 ∈ L2(U). Then

(V (f1, g1), V (f2, g2)L2(Û×U,S2) = (f1, f2)L2(U))(g1, g2)L2(U).

Proof. For all ξ = (b, a) ∈ U, let Kξ
1 and Kξ

2 be defined by

(Kξ
j )(z) = (fj(ξ

1/2 · z)gj(z−1 · ξ1/2), z ∈ U, j = 1, 2.

Then

(V (f1, g1), V (f2, g2))L2(Û×U,S2)

=

∫ ∞
0

∫ ∞
−∞

∑
j=±

tr(V (f1, g1)(ρj, z)V (f2, g2)(ρj, z)
∗)
dx dy

y2

=

∫ ∞
0

∫ ∞
−∞

∑
j=±

tr

(
K̂ξ

1(ρj)K̂
ξ
2(ρj)

∗
)
dx dy

y2

=

∫ ∞
0

∫ ∞
−∞

(
K̂ξ

1(ρj), K̂
ξ
2(ρj)

)
L2(Û ,S2)

dx dy

y2

=

∫ ∞
0

∫ ∞
−∞

(
Kξ

1 , K
ξ
2

)
L2(U)

dx dy

y2

=

∫ ∞
0

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

f1(ξ
1/2 · z)g1(z−1 · ξ1/2)f2(ξ1/2 · z)g2(z

−1 · ξ1/2)db da
a2

dx dy

y2
.
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Let z̃ = ξ1/2 · z . Then because of the left invariance of the Haar measure,

dx̃ dỹ

ỹ2
=
dx dy

y2
.

So,

(V (f1, g1), V (f2, g2))L2(Û×U,S2)

=

∫ ∞
0

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

f1(z̃)g1(z̃−1 · ξ)f2(z̃)g2(z̃
−1 · ξ)dx̃ dỹ

ỹ2
db da

a2
.

Let ξ̃ = z̃−1 · ξ. Then by the left invariance again, db̃ dã
ã2

= db da
a2
. Therefore

(V (f1, g1), V (f2, g2))L2(Û×U,S2)

=

∫ ∞
0

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

f1(z̃)g1(ξ̃)f2(z̃)g2(ξ̃)
dx̃ dỹ

ỹ2
db̃ dã

ã2
.

So,

(V (f1, g1), V (f2, g2))L2(Û×U,S2) = (f1, f2)L2(U)(g1, g2)L2(U). (6.9)

�

Theorem 6.2. Let f1, f2, g1, g2 ∈ L2(U). Then

(W (f1, g1),W (f2, g2))L2(U×Û ,S2) = (f1, f2)L2(U)(g1, g2)L2(U).

Proof We have

(W (f1, g1),W (f2, g2))L2(U×Û ,S2)

=

∫ ∞
0

∫ ∞
−∞

∑
j=±

tr(W (f1, g1)(z, ρj)W (f2, g2)(z, ρj)
∗)
dx dy

y2

=

∫ ∞
0

∫ ∞
−∞

∑
j=±

tr
(
K̂z

1 (ρj)K̂z
2 (ρj)

∗
) dx dy

y2

=

∫ ∞
0

∫ ∞
−∞

(K̂z
1 (ρj), K̂z

2 (ρj))L2(Û ,HS)

dx dy

y2

=

∫ ∞
0

∫ ∞
−∞

(Kz
1 , K

z
2 )L2(U)

dx dy

y2

=

∫ ∞
0

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

f1(ξ
1/2 · z)g1(z−1 · ξ1/2)f2(ξ1/2 · z)g2(z

−1 · ξ1/2)db da
a2

dx dy

y2
.

Let z̃ = ξ1/2 · z. Then by left invariance, dx̃ dỹ
ỹ2

= dx dy
y2

. Therefore

(W (f1, g1),W (f2, g2)L2(U×Û ,S2)

=

∫ ∞
0

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

f1(z̃g1(z̃−1 · ξ)f2(z̃)g2(z̃
−1 · ξ)dx̃ dỹ

ỹ2
db da

a2
.
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Let ξ̃ = z̃−1 · ξ. Then by left invariance again, db̃ dã
ã2

= db da
a2
. Therefore

(W (f1, g1),W (f2, g2))L2(U×Û ,S2)

=

∫ ∞
0

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

f1(z̃)g1(ξ̃)f2(z̃)g2(ξ̃)
dx̃ dỹ

ỹ2
db̃ dã

ã2

= (f1, f2)L2(U)(g1, g2)L2(U).

and the proof is complete. �

Let σ : U × {±} → S2 be an operator-valued symbol. Then we define the Weyl
transform Wσ associated to the symbol σ by

(Wσf, g)L2(U) =

∫ ∞
0

∫ ∞
−∞

[∑
j=±

tr(σ(b, a, ρj)DjW (f, g)(b, a, ρj))

]
db da

a2
(6.10)

for all f and g in L2(U).

Theorem 6.3. Let σ : U × {±} → S2 be an operator-valued symbol such that the
mappings

U × {±} 3 (b, a, j) 7→ Djσ(b, a, ρj)
∗ ∈ S2(Rj)

with j ∈ {±} are in L2(U × Û , S2). Then Wσ : L2(U) → L2(U) is a bounded linear
operator.

Proof. Let f, g ∈ L2(U). Then by (6.10), the Schwarz inequality and the Moyal
identity for the Wigner transforms,

|(Wσf, g)L2(U)| ≤
∫ ∞
0

∫ ∞
−∞

[∑
j=±

|tr(σ(b, a, ρj)DjW (f, g)(b, a, ρj))|

]
db da

a2

=
∑
j=±

∫ ∞
0

∫ ∞
−∞
|tr(σ(b, a, ρj)DjW (f, g)(b, a, ρj))|

db da

a2

≤
∑
j=±

∫ ∞
0

∫ ∞
−∞
‖σ(b, a, ρj)Dj‖S2‖W (f, g)(b, a, ρj)‖S2

db da

a2

≤
∑
j=±

(∫ ∞
0

∫ ∞
−∞
‖σ(b, a, ρj)Dj‖2S2

db da

a2

)1/2

×

(∫ ∞
0

∫ ∞
−∞
‖W (f, g)(b, a, ρj)‖2S2

db da

a2

)1/2

≤

(∫ ∞
0

∫ ∞
−∞

∑
j=±

‖σ(b, a, ρj)Dj‖2S2

db da

a2

)1/2

×

(∫ ∞
0

∫ ∞
−∞

∑
j=±

‖W (f, g)(b, a, ρj)‖2S2

db da

a2

)1/2

≤

(∫ ∞
0

∫ ∞
−∞

∑
j=±

‖(σ(b, a, ρj)Dj)
∗‖2S2

db da

a2

)1/2

×
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0

∫ ∞
−∞

∑
j=±

‖W (f, g)(b, a, ρj)‖2S2

db da

a2

)1/2

≤

(∫ ∞
0

∫ ∞
−∞

∑
j=±

‖Djσ(b, a, ρj)
∗‖2S2

db da

a2

)1/2

×

(∫ ∞
0

∫ ∞
−∞

∑
j=±

‖W (f, g)(b, a, ρj)‖2S2

db da

a2

)1/2

≤ ‖Dσ(b, a, ρ)∗‖L2(U×Û ,S2)‖W (f, g)‖L2(U×Û ,S2)

≤ ‖Dσ(b, a, ρ)∗‖L2(U×Û ,S2)‖f‖L2(U)‖g‖L2(U).

�
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Birkhäuser, (2017), 1–14.

[2] Dasgupta, A. and Wong, M. W., Hilbert–Schmidt and trace class pseudo-differential operators
on the Heisenberg group”, Pseudo-Differ. Oper. Appl. 4 (2013), 345–359.

[3] Dasgupta, A. and Wong, M. W., Weyl transforms for H-type groups, J. Pseudo-Differ. Oper.
Appl. 6 (2015), 11–19

[4] Duflo, M. and Moore, C.C., On the regular representation of a non-unimodular locally compact
group, J. Funct. Anal., 21 (1976), 209–243.

[5] Molahajloo, S. and Wong, K. L., Pseudo-differential operators on finite abelian groups, J.
Pseudo-Differ. Oper. Appl. 6 (2015), 1–9.

[6] Molahajloo, S. and Wong, M. W., Pseudo-differential operators on S1, in New Developments in
Pseudo-Differential Operators Operator Theory: Advances and Applications 189, Birkhäuser,
2009, 297–306.

[7] Teufel, S., Adiabatic Perturbation Theory in Quantum Dynamics, Springer, 2003.
[8] Wong, M. W., Weyl Transforms, Springer, 1998.
[9] Wong, M. W., Wavelet Transforms and Localization Operators, Birkhäuser, 2002.
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