
Solutions to Assignment 5

22.4. LetA =

(
a1 b1
c1 d1

)
andB =

(
a2 b2
c2 d2

)
be matrices in SL(2,R).Then

for all z ∈ H,

(fA ◦ fB)(z) = fA(fBz)

=
a1B(z) + b1
c1B(z) + d1

=
a1

(
a2z+b2
c2z+d2

)
+ b1

c1

(
a2z+b2
c2z+d2

)
+ d1

=
(a1a2 + b1c2)z + a1b2 + b1d2
(c1a2 + c2d1)z + c1b2 + d1d2

= f a1a2 + b1c2 a1b2 + b1d2
c1a2 + c2d1 c1b2 + d1d2

(z).

But

AB =

(
a1 b1
c1 d1

)(
a2 b2
c2 d2

)
=

(
a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

)
.

Therefore
fA ◦ fB = fAB.

22.6. Let A =

(
a b
c d

)
∈ SL(2,R) be such that fA(i) = i. Then

ai+ b

ci+ d
= i

Therefore
ai+ b = −c+ di.

So,
b = −c



and
a = d.

Since ad− bc = 1, it follows that a2 + c2 = 1. So, we can let a = cos θ and
c = sin θ for some θ ∈ R. Therefore

A =

(
cos θ − sin θ
sin θ cos θ

)
.

Therefore the required isotropy subgroup is{
fAθ

: Aθ =

(
cos θ − sin θ
sin θ cos θ

)
: θ ∈ R

}
.

22.7. We are given that

H 3 (b, a) 7→
(

1√
a

b√
a

0
√
a

)
∈ AN.

So, for all (b1, a1) and (b2, a2) ∈ H, we have( 1√
a1

b1√
a1

0
√
a1

)( 1√
a2

b2√
a2

0
√
a2

)
=

(
1√
a1a2

b2√
a1a2

+
b1
√
a2√
a1

0
√
a1a2

)

=

( 1√
a1a2

b2+a2b1√
a1a2

0
√
a1a2

)
.

So, the group law · is given by

(b1, a1) · (b2, a2) = (b2 + a2b1, a1a2).

23.1. We use the equation (near the top of page 142)

u(z) =
1

πi

∫
∂D

f(w)

w − z
dw − a0, z ∈ D,
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where
Reu(z) = f(z), z ∈ ∂D.

Therefore for all z ∈ C with |z| = r < 1,

|u(z)| ≤ 1

π

∫ 2π

0

M

1− r
dθ + |a0| = |u(0)|+ 2M

1− r
.

23.2. We know that all holomorphic functions v on D with

Re v(reiθ)→ f(eiθ)

uniformly with respect to θ on [0, 2π] as r → 1− are of the form

v(z) =
1

2πi

∫
∂D
f(w)

w + z

w − z
dw

w
+ ic,

wher c is an arbitrary real constant, Since

u(reiθ) = Re v(z) =
1

2πi

∫
∂D
f(w)

w + z

w − z
dw

w
=

1

2π

∫ 2π

0

f(eiφ)
1− r2

1− 2r cos(θ − φ) + r2
dr,

it follows that the function u given by

u(reiθ) =
1

2π

∫ 2π

0

f(eiφ)
1− r2

1− 2r cos(θ − φ) + r2
dφ

is harmionic on D and is a solution.

23.3. The proof of Theorem 23.8 in the textbook applies.

23.4. Again the proof of Theorem 23.8 can be adapted. Let us look at the
details. Let u and v be holomorphic functions on D such that

u(reiθ)→ f(eiθ)

and
v(reiθ)→ f(eiθ)
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uniformly with respect to θ on [0, 2π] as r → 1− . Let w = u− v. Then w
is a holomorphic function on D with

w(reiθ) = u(reiθ)− v(reiθ)→ f(eiθ)− f(eiθ) = 0

uniformly with respect to θ on [0, 2π] as r → 1− . Suppose that, by way of
contradiction, there exists a point z0 in D such that w(z0) 6= 0. Then there
exists a number ρ ∈ (0, 1) such that |z0| < ρ and

|w(reiθ)| < |w(z0)|
2

, 0 ≤ θ ≤ 2π,

whenever ρ ≤ r < 1. Now, by the Maximum Modulus Principle for holo-
morphic functions, max|z|≤ρ |w(z)| has to be attained at some point in the
circle {z ∈ C : |z| = ρ}. So, w has a local maximum inside D. By the first
version of the Maximum Modulus Principle for holomorphic functions, w
must be a constant function on D. But

w(reiθ)→ 0

uniformly with respect to θ on [0, 2π]. Therefore w = 0 on D. This proves
that u = v on D.

23.5. Let f(z) = z for all z ∈ ∂D. Let

u(z) =
∞∑
n=0

anz
n

be a holomorphic function on D such that

u(reiθ)→ f(eiθ)

uniformly with respect to θ on [0, 2π] as r → 1− . Therefore

u(reiθ)→ e−iθ

uniformly with respect to θ on [0, 2π] as r → 1−. So,∫ 2π

0

u(reiθ) dθ →
∫ 2π

0

e−iθdθ = 0.
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as r → 1− . But for all r with 0 < r < 1,∫ 2π

0

u(reiθ)dθ =
∞∑
n=0

anr
n

∫ 2π

0

einθdθ = a0.

Therefore

u(reiθ) =
∞∑
n=1

anr
neinθ = eiθ

∞∑
n=1

anr
neinθ = eiθ

∞∑
m=0

am+1r
m+1ei(m+1)θ.

So, let

v(reiθ) =
∞∑
m=0

am+1r
m+1ei(m+1)θ.

Then v is a holomorphic function on D with

v(reiθ)→ e−2iθ

uniformly with respect to θ on [0, 2π] as r → 1− . Thus,∫ 2π

0

v(reiθ)dθ →
∫ 2π

0

e−2iθdθ = 0.

Bur for all r ∈ (0, 1),∫ 2π

0

v(reiθ) dθ =
∞∑
m=0

am+1r
m+1

∫ ∞
0

eimθdθ = a1r = 0.

Therefore a1 = 0. Similarly, an = 0 for all n ∈ N. Therefore u = 0 on D.
So,

u(reiθ)→ 0

unformly with respect to θ on [0, 2π] as r → 1−. This is a contradiction.
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