Solutions to Assignment 5

22.4. Let A = ( @ b ) and B = ( az by ) be matrices in SL(2, R).Then

¢ di oy do
for all z € H,
(fao fe)(2) = fa(fB2)
. alB(z) + b1
N ClB(Z> + dl

o (227 ) +
o () +
(a1a2 + b162)2 + (llbg + bldg
(Clag + Cle)Z —+ Cle + d1d2

=/ ajag + bicy  aiby + bids (2).
c1Q9 + CZdl Clbg + d1d2

But

AB — a; by as by _ [ @ma2 +bicy arby + bidy
C1 dl Co dg ci1ag + d162 Clbg + d1d2 '

Therefore

Jao fp = fap.
22.6. Let A= ( Z Z ) € SL(2,R) be such that f4(i) = . Then
ai+b ;
ci+d
Therefore
ai +b=—c+di.
So,

b= —c



and
a=d.

Since ad — be = 1, it follows that a? + ¢? = 1. So, we can let a = cos 6 and
¢ = sin @ for some 6 € R. Therefore

A cos # —sin 0
~\sinf cosf |-
Therefore the required isotropy subgroup is

cos @ —sin 6
{fAG'AQ:(siHG cos@)'eeR}'

22.7. We are given that
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So, for all (by,a;) and (bg, az) € H, we have
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So, the group law - is given by
(b1, a1) - (b2, a2) = (ba + agby, a1as).

23.1. We use the equation (near the top of page 142)

1
u(z) = — (w)dw—a_o, zeD,

T Jop W — 2



where

Reu(z) = f(z), =€ dD.
Therefore for all z € C with |z| =7 < 1,

1

M 2M
) <5 [ b+l = u(0)] +
i

1—r

™

23.2. We know that all holomorphic functions v on D with
Rev(re”) — f(e)

uniformly with respect to 6 on [0, 27] as r — 1— are of the form

o) =5 | F) T e

271 w—2zZ W

wher ¢ is an arbitrary real constant, Since

, 1 w+zdw 1 [T 1—r?
0y — - = i¢ d
u(re”) = Rew(z) 271 /am) f(w)w —zw 27 J /(e )1 — 2rcos(0 — ¢) + r? "

it follows that the function u given by

) 1 2 ) 1 — ,,,.2
0\ ip
u(re”) = 27 /0 fle )1 —2rcos(f — ¢) +r? a¢

is harmionic on D and is a solution.
23.3. The proof of Theorem 23.8 in the textbook applies.

23.4. Again the proof of Theorem 23.8 can be adapted. Let us look at the
details. Let u and v be holomorphic functions on ID such that

u(re’) = f(e”)

and
v(re?) — f(eie)

3



uniformly with respect to 6 on [0,27] as r — 1 — . Let w = u — v. Then w
is a holomorphic function on D with

w(re®) = u(re®) —v(re?) — f(e) — f(e?) =0

uniformly with respect to 6 on [0, 27] as  — 1 — . Suppose that, by way of
contradiction, there exists a point zy in D such that w(zy) # 0. Then there
exists a number p € (0, 1) such that |z| < p and

[w(z0)|

5
whenever p < r < 1. Now, by the Maximum Modulus Principle for holo-
morphic functions, max|.;<, |w(z)| has to be attained at some point in the
circle {z € C : |z] = p}. So, w has a local maximum inside . By the first
version of the Maximum Modulus Principle for holomorphic functions, w
must be a constant function on . But

lw(re®)| < 0<6<2nm,

w(rew) —0

uniformly with respect to 6 on [0, 2x]. Therefore w = 0 on . This proves
that w = v on D.

23.5. Let f(z) =% for all z € ID. Let

o0
u(z) = Z a,z"
n=0

be a holomorphic function on ID such that
u(re) — f(e")

uniformly with respect to 6 on [0, 27] as r — 1 — . Therefore
u(re®) — e

uniformly with respect to 6 on [0, 27] as r — 1—. So,

2m 2m
/ u(re) do — / e ?dg = 0.
0 0
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as r — 1 —. But for all » with 0 <r < 1,

2w 0 2m
/ u(re®)do = E anrn/ e™dh = aq.
0 p— 0
Therefore
o oo oo
u(reze) — § :an,r,nemQ — 629 E anrnezne — ez@ § am+1rm+lez(m+1)9.
n=1 n=1 m=0
So, let
oo
v(re?) = g am+17’m+lei(m+1)9.
m=0

Then v is a holomorphic function on D with
v(re?) — e

uniformly with respect to € on [0,27] as r — 1 — . Thus,

2 27
/ v(re®)do — / e 2940 = 0.
0 0

Bur for all € (0, 1),

27 00 00
/ v(re)do = Z amﬂrm*l/ 4o = a;r = 0.
0 — 0

Therefore a; = 0. Similarly, a,, = 0 for all n € N. Therefore u« = 0 on D.
So, '
u(re) — 0

unformly with respect to 6 on [0,27] as r — 1—. This is a contradiction.



