Solutions to Assignment 5

22.4. Let $A=\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right)$ and $B=\left(\begin{array}{cc}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right)$ be matrices in $\operatorname{SL}(2, \mathbb{R})$.Then for all $z \in \mathbb{H}$,

$$
\begin{aligned}
\left(f_{A} \circ f_{B}\right)(z) & =f_{A}\left(f_{B} z\right) \\
& =\frac{a_{1} B(z)+b_{1}}{c_{1} B(z)+d_{1}} \\
& =\frac{a_{1}\left(\frac{a_{2} z+b_{2}}{c_{2} z+d_{2}}\right)+b_{1}}{c_{1}\left(\frac{a_{2} z+b_{2}}{c_{2} z+d_{2}}\right)+d_{1}} \\
& =\frac{\left(a_{1} a_{2}+b_{1} c_{2}\right) z+a_{1} b_{2}+b_{1} d_{2}}{\left(c_{1} a_{2}+c_{2} d_{1}\right) z+c_{1} b_{2}+d_{1} d_{2}} \\
& =f\left(\begin{array}{ll}
a_{1} a_{2}+b_{1} c_{2} & a_{1} b_{2}+b_{1} d_{2} \\
c_{1} a_{2}+c_{2} d_{1} & c_{1} b_{2}+d_{1} d_{2}
\end{array}\right)(z)
\end{aligned}
$$

But

$$
A B=\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)=\left(\begin{array}{ll}
a_{1} a_{2}+b_{1} c_{2} & a_{1} b_{2}+b_{1} d_{2} \\
c_{1} a_{2}+d_{1} c_{2} & c_{1} b_{2}+d_{1} d_{2}
\end{array}\right)
$$

Therefore

$$
f_{A} \circ f_{B}=f_{A B}
$$

22.6. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}(2, \mathbb{R})$ be such that $f_{A}(i)=i$. Then

$$
\frac{a i+b}{c i+d}=i
$$

Therefore

$$
a i+b=-c+d i
$$

So,

$$
b=-c
$$

and

$$
a=d
$$

Since $a d-b c=1$, it follows that $a^{2}+c^{2}=1$. So, we can let $a=\cos \theta$ and $c=\sin \theta$ for some $\theta \in \mathbb{R}$. Therefore

$$
A=\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Therefore the required isotropy subgroup is

$$
\left\{f_{A_{\theta}}: A_{\theta}=\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right): \theta \in \mathbb{R}\right\}
$$

22.7. We are given that

$$
\mathbb{H} \ni(b, a) \mapsto\left(\begin{array}{cc}
\frac{1}{\sqrt{a}} & \frac{b}{\sqrt{a}} \\
0 & \sqrt{a}
\end{array}\right) \in A N .
$$

So, for all $\left(b_{1}, a_{1}\right)$ and $\left(b_{2}, a_{2}\right) \in \mathbb{H}$, we have

$$
\begin{aligned}
\left(\begin{array}{cc}
\frac{1}{\sqrt{a_{1}}} & \frac{b_{1}}{\sqrt{a_{1}}} \\
0 & \sqrt{a_{1}}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{a_{2}}} & \frac{b_{2}}{\sqrt{a_{2}}} \\
0 & \sqrt{a_{2}}
\end{array}\right) & =\left(\begin{array}{cc}
\frac{1}{\sqrt{a_{1} a_{2}}} & \frac{b_{2}}{\sqrt{a_{1} a_{2}}}+\frac{b_{1} \sqrt{a_{2}}}{\sqrt{a_{1}}} \\
0 & \sqrt{a_{1} a_{2}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{1}{\sqrt{a_{1} a_{2}}} & \frac{b_{2}+a_{2} b_{1}}{\sqrt{a_{1} a_{2}}} \\
0 & \sqrt{a_{1} a_{2}}
\end{array}\right) .
\end{aligned}
$$

So, the group law • is given by

$$
\left(b_{1}, a_{1}\right) \cdot\left(b_{2}, a_{2}\right)=\left(b_{2}+a_{2} b_{1}, a_{1} a_{2}\right)
$$

23.1. We use the equation (near the top of page 142)

$$
u(z)=\frac{1}{\pi i} \int_{\partial \mathbb{D}} \frac{f(w)}{w-z} d w-\overline{a_{0}}, \quad z \in \mathbb{D}
$$

where

$$
\operatorname{Re} u(z)=f(z), \quad z \in \partial \mathbb{D} .
$$

Therefore for all $z \in \mathbb{C}$ with $|z|=r<1$,

$$
|u(z)| \leq \frac{1}{\pi} \int_{0}^{2 \pi} \frac{M}{1-r} d \theta+\left|a_{0}\right|=|u(0)|+\frac{2 M}{1-r}
$$

23.2. We know that all holomorphic functions v on \mathbb{D} with

$$
\operatorname{Re} v\left(r e^{i \theta}\right) \rightarrow f\left(e^{i \theta}\right)
$$

uniformly with respect to θ on $[0,2 \pi]$ as $r \rightarrow 1$ - are of the form

$$
v(z)=\frac{1}{2 \pi i} \int_{\partial \mathbb{D}} f(w) \frac{w+z}{w-z} \frac{d w}{w}+i c
$$

wher c is an arbitrary real constant, Since
$u\left(r e^{i \theta}\right)=\operatorname{Re} v(z)=\frac{1}{2 \pi i} \int_{\partial \mathbb{D}} f(w) \frac{w+z}{w-z} \frac{d w}{w}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \phi}\right) \frac{1-r^{2}}{1-2 r \cos (\theta-\phi)+r^{2}} d r$,
it follows that the function u given by

$$
u\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \phi}\right) \frac{1-r^{2}}{1-2 r \cos (\theta-\phi)+r^{2}} d \phi
$$

is harmionic on \mathbb{D} and is a solution.
23.3. The proof of Theorem 23.8 in the textbook applies.
23.4. Again the proof of Theorem 23.8 can be adapted. Let us look at the details. Let u and v be holomorphic functions on \mathbb{D} such that

$$
u\left(r e^{i \theta}\right) \rightarrow f\left(e^{i \theta}\right)
$$

and

$$
v\left(r e^{i \theta}\right) \rightarrow f\left(e^{i \theta}\right)
$$

uniformly with respect to θ on $[0,2 \pi]$ as $r \rightarrow 1-$. Let $w=u-v$. Then w is a holomorphic function on \mathbb{D} with

$$
w\left(r e^{i \theta}\right)=u\left(r e^{i \theta}\right)-v\left(r e^{i \theta}\right) \rightarrow f\left(e^{i \theta}\right)-f\left(e^{i \theta}\right)=0
$$

uniformly with respect to θ on $[0,2 \pi]$ as $r \rightarrow 1-$. Suppose that, by way of contradiction, there exists a point z_{0} in \mathbb{D} such that $w\left(z_{0}\right) \neq 0$. Then there exists a number $\rho \in(0,1)$ such that $\left|z_{0}\right|<\rho$ and

$$
\left|w\left(r e^{i \theta}\right)\right|<\frac{\left|w\left(z_{0}\right)\right|}{2}, \quad 0 \leq \theta \leq 2 \pi
$$

whenever $\rho \leq r<1$. Now, by the Maximum Modulus Principle for holomorphic functions, $\max _{|z| \leq \rho}|w(z)|$ has to be attained at some point in the circle $\{z \in \mathbb{C}:|z|=\rho\}$. So, w has a local maximum inside \mathbb{D}. By the first version of the Maximum Modulus Principle for holomorphic functions, w must be a constant function on \mathbb{D}. But

$$
w\left(r e^{i \theta}\right) \rightarrow 0
$$

uniformly with respect to θ on $[0,2 \pi]$. Therefore $w=0$ on \mathbb{D}. This proves that $u=v$ on \mathbb{D}.
23.5. Let $f(z)=\bar{z}$ for all $z \in \partial \mathbb{D}$. Let

$$
u(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

be a holomorphic function on \mathbb{D} such that

$$
u\left(r e^{i \theta}\right) \rightarrow f\left(e^{i \theta}\right)
$$

uniformly with respect to θ on $[0,2 \pi]$ as $r \rightarrow 1-$. Therefore

$$
u\left(r e^{i \theta}\right) \rightarrow e^{-i \theta}
$$

uniformly with respect to θ on $[0,2 \pi]$ as $r \rightarrow 1-$. So,

$$
\int_{0}^{2 \pi} u\left(r e^{i \theta}\right) d \theta \rightarrow \int_{0}^{2 \pi} e^{-i \theta} d \theta=0
$$

as $r \rightarrow 1-$. But for all r with $0<r<1$,

$$
\int_{0}^{2 \pi} u\left(r e^{i \theta}\right) d \theta=\sum_{n=0}^{\infty} a_{n} r^{n} \int_{0}^{2 \pi} e^{i n \theta} d \theta=a_{0}
$$

Therefore

$$
u\left(r e^{i \theta}\right)=\sum_{n=1}^{\infty} a_{n} r^{n} e^{i n \theta}=e^{i \theta} \sum_{n=1}^{\infty} a_{n} r^{n} e^{i n \theta}=e^{i \theta} \sum_{m=0}^{\infty} a_{m+1} r^{m+1} e^{i(m+1) \theta}
$$

So, let

$$
v\left(r e^{i \theta}\right)=\sum_{m=0}^{\infty} a_{m+1} r^{m+1} e^{i(m+1) \theta}
$$

Then v is a holomorphic function on \mathbb{D} with

$$
v\left(r e^{i \theta}\right) \rightarrow e^{-2 i \theta}
$$

uniformly with respect to θ on $[0,2 \pi]$ as $r \rightarrow 1-$. Thus,

$$
\int_{0}^{2 \pi} v\left(r e^{i \theta}\right) d \theta \rightarrow \int_{0}^{2 \pi} e^{-2 i \theta} d \theta=0
$$

Bur for all $r \in(0,1)$,

$$
\int_{0}^{2 \pi} v\left(r e^{i \theta}\right) d \theta=\sum_{m=0}^{\infty} a_{m+1} r^{m+1} \int_{0}^{\infty} e^{i m \theta} d \theta=a_{1} r=0 .
$$

Therefore $a_{1}=0$. Similarly, $a_{n}=0$ for all $n \in \mathbb{N}$. Therefore $u=0$ on \mathbb{D}. So,

$$
u\left(r e^{i \theta}\right) \rightarrow 0
$$

unformly with respect to θ on $[0,2 \pi]$ as $r \rightarrow 1-$. This is a contradiction.

