Solutions to Assignment 4

20.1. Let $f(z)=z^{2}$. Then f is holomorphic on \mathbb{D} and

$$
f\left(\frac{1}{n}\right)=\frac{1}{n^{2}}, \quad n=2,3, \ldots
$$

Let g be another holomorphic function on \mathbb{D} with

$$
g\left(\frac{1}{n}\right)=\frac{1}{n^{2}}, \quad n=2,3, \ldots
$$

Then $f-g$ is holomorphic on \mathbb{D} with $f-g=0$ on $Z=\left\{\frac{1}{n}: n=2,3, \ldots\right\}$. But Z has a limit point 0 in \mathbb{D}. Therefore $g(z)=f(z)$ for all $z \in \mathbb{D}$. So, the function f is unique.
20.2. Let g be a holomorphic function on \mathbb{D} such that

$$
g\left(\frac{1}{n}\right)=\frac{(-1)^{n}}{n^{2}}, \quad n=2,3, \ldots
$$

Then using the function f in 20.1,

$$
(f-g)\left(\frac{1}{n}\right)=\frac{1}{n^{2}}-\frac{(-1)^{n}}{n^{2}}= \begin{cases}0, & n=2,4, \ldots \\ \frac{2}{n^{2}}, & n=3,5, \ldots\end{cases}
$$

Therefore $f-g=0$ on $Z=\left\{\frac{1}{n}: n=2,4, \ldots\right\}$ that has a limit point 0 in \mathbb{D}. Therefore by the Unique Continuation Property of holomorphic functions,

$$
f(z)=g(z), \quad z \in \mathbb{D}
$$

But

$$
(f-g)\left(\frac{1}{n}\right)=\frac{2}{n^{2}}, \quad n=3,5, \ldots
$$

This is a contradiction.
20.5. Let $g=f \circ F^{-1}$, where $F^{-1}: \mathbb{D} \rightarrow \mathbb{H}$ is given by

$$
F^{-1}(w)=i \frac{1-w}{1+w}, \quad w \in \mathbb{D}
$$

If $\mid f\left(z_{0} \mid=1\right.$ for some $z_{0} \in \mathbb{H}$, then $|f(z)|$ attains a local maximum inside \mathbb{H}. By the Maximum Modulus Principle for holomorphic functions, $|f(z)|$ is a constant function on \mathbb{H}. Since $f(i)=0$, it follows that $f(z)=0$ for all $z \in \mathbb{H}$. and the inequality is trivially true. So, assume that $|f(z)|<1$ for all $z \in \mathbb{H}$. Then

$$
g(w)=\left(f \circ F^{-1}\right)(w)=f\left(i \frac{1-w}{1+w}\right), \quad w \in \mathbb{D}
$$

Therefore $g: \mathbb{D} \rightarrow \mathbb{D}$ is a holomorphic function with

$$
g(0)=f(i)=0
$$

By the Schwarz lemma,

$$
|g(w)| \leq|w|, \quad w \in \mathbb{D}
$$

So, for all $z \in \mathbb{H}$,

$$
|f(z)|=\left\lvert\, f\left(F ^ { - 1 } (F (z)) \left|\leq|F(z)|=\left|\frac{i-z}{i+z}\right|\right.\right.\right.
$$

21.2. By Corollary 21.2,

$$
K=\{f \in \operatorname{Aut}(\mathbb{D}): f(0)=0\}=\left\{r_{\theta}: \theta \in \mathbb{R}\right\} .
$$

Next,

$$
K \backslash \operatorname{Aut}(\mathbb{D})=\{K g: g \in \operatorname{Aut}(\mathbb{D})\}
$$

Let $g=e^{i \theta} \psi_{\alpha}$ with $\theta \in \mathbb{R}$ and $\alpha \in \mathbb{D}$. Then

$$
K g=\left\{e^{i \phi} e^{i \theta} \psi_{\alpha}: \phi \in \mathbb{R}\right\}=\left\{e^{i \phi} \psi_{\alpha}: \phi \in \mathbb{R}\right\}=\operatorname{Aut}(\mathbb{D}) .
$$

Therefore

$$
\{K g: g \in \operatorname{Aut}(\mathbb{D})\}=\{\operatorname{Aut}(\mathbb{D})\}
$$

which can be identified with \mathbb{D}.
21.3.(a) The mapping

$$
\mathrm{SO}(2, \mathbb{C}) \ni\left(\begin{array}{cc}
a & 0 \\
0 & \bar{a}
\end{array}\right) \mapsto a \in \mathbb{S}^{1}
$$

is a bijection. Moreover, let $\left(\begin{array}{cc}a & 0 \\ 0 & \bar{a}\end{array}\right)$ and $\left(\begin{array}{cc}b & 0 \\ 0 & \bar{b}\end{array}\right)$ be elements in $\operatorname{SO}(2, \mathbb{C})$.
Then

$$
\left(\begin{array}{cc}
a & 0 \\
0 & \bar{a}
\end{array}\right)\left(\begin{array}{cc}
b & 0 \\
0 & \bar{b}
\end{array}\right)=\left(\begin{array}{ll}
a b & 0 \\
0 & \overline{a b}
\end{array}\right) \mapsto a b \in \mathbb{S}^{1} .
$$

Therefore $\mathrm{SO}(2, \mathbb{C})$ and K are isomorphic groups.
21.3.(b) Let $A=\left(\begin{array}{cc}a & b \\ \bar{b} & \bar{a}\end{array}\right) \in \mathrm{SU}(1,1)$ be such that

$$
f_{A}(0)=-\frac{a 0+b}{\bar{b} 0+\bar{a}}=0
$$

Then $b=0$ and

$$
A=\left(\begin{array}{ll}
a & 0 \\
0 & \bar{a}
\end{array}\right) \in \mathrm{SO}(2, \mathbb{C})
$$

Therefore $\mathrm{SO}(2, \mathbb{C})$ is the isotropy subgroup of $\mathrm{SU}(1,1)$.
21.3.(c) By 21.3(a), we see that $\mathrm{SO}(2, \mathbb{C})$ and K are isomorphic groups. Moreover, $\operatorname{Aut}(\mathbb{D})$ and $Z \backslash \mathrm{SU}(1,1)$ are isomorphic groups. In addition,

$$
\begin{aligned}
Z \backslash \mathrm{SU}(1,1) & =\{Z g: g \in \mathrm{SU}(1,1)\} \\
& =\left\{ \pm\left(\begin{array}{cc}
a & b \\
\bar{b} & \bar{a}
\end{array}\right): a, b \in \mathbb{C},|a|^{2}-|b|^{2}=1\right\}=\mathrm{SU}(1,1)
\end{aligned}
$$

Therefore $\mathrm{SO}(2, \mathbb{C}) \backslash \mathrm{SU}(1,1)$ is isomorphic with $K \backslash \operatorname{Aut}(\mathbb{D})$ and hence can be identified with \mathbb{D}.
21.4. For all $w \in \mathbb{D}$, let $g=\psi_{f(w)} \circ f \circ \psi_{w}^{-1}$. Then $g: \mathbb{D} \rightarrow \mathbb{D}$ is a holomorphic function such that

$$
g(0)=\left(\psi_{f(w)} \circ f \circ \psi_{w}^{-1}\right)(0)=\psi_{f(w)}(f(w))=0
$$

By the Schwarz lemma, we get for all $z \in \mathbb{D}$,

$$
|g(z)| \leq|z|, \quad z \in \mathbb{D}
$$

Therefore

$$
\left|\left(\psi_{f(w)} \circ f \circ \psi_{w}^{-1}\right)\left(\psi_{w}(z)\right)\right|=\left|g\left(\psi_{w}(z)\right)\right| \leq\left|\psi_{w}(z)\right|, \quad z \in \mathbb{D} .
$$

So,

$$
\left|\psi_{f(w)}(f(z))\right| \leq\left|\frac{w-z}{1-\bar{w} z}\right|, \quad z \in \mathbb{D}
$$

Hence

$$
\left|\frac{f(w)-f(z)}{1-\overline{f(w)} f(z)}\right| \leq\left|\frac{w-z}{1-\bar{w} z}\right|
$$

for all w and z in \mathbb{D}. If $f \in \operatorname{Aut}(\mathbb{D})$, then so is f^{-1} and we have

$$
\left|\frac{f^{-1}(w)-f^{-1}(z)}{1-\overline{f^{-1}(w)} f^{-1}(z)}\right| \leq\left|\frac{w-z}{1-\bar{w} z}\right|
$$

for all w and z in \mathbb{D}. Replacing w by $f(w)$ and z by $f(z)$ in the preceding inequality, we get

$$
\left|\frac{w-z}{1-\bar{w} z}\right| \leq\left|\frac{f(w)-f(z)}{1-\overline{f(w)} f(z)}\right|
$$

and so we get

$$
\left|\frac{f(w)-f(z)}{1-\overline{f(w)} f(z)}\right|=\left|\frac{w-z}{1-\bar{w} z}\right|
$$

for all w and z in \mathbb{D}.
21.5. For all w and z in \mathbb{D}, we get by 21.4

$$
\left|\frac{f(w)-f(z)}{w-z}\right| \leq\left|\frac{1-\overline{f(w} f(z)}{1-\bar{w} z}\right|
$$

Let $w \rightarrow z$. Then

$$
\left|f^{\prime}(z)\right| \leq\left|\frac{1-|f(z)|^{2}}{1-|z|^{2}}\right|, \quad z \in \mathbb{D}
$$

which is

$$
\frac{\left|f^{\prime}(z)\right|^{2}}{1-|f(z)|^{2}} \leq \frac{1}{1-|z|^{2}}, \quad z \in \mathbb{D}
$$

