Solutions to Assigment 1
12.1. We first write for all z with 0 < |z — 4] < 4,
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Using the geometric series expansion, we get
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12.2. Using the Taylor series expansion of cos, we get
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12.3. The Laurent series of /% at 0 is

Let C be the unit circle with center at the origin and oriented once in the
counterclockwise direction. Then
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Parametrizing C' by

we get forallm =0,1,2,...,
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+ ¢°* % (cos(sin @) sin(nf) — sin(sin 0) cos(nd)) db.
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The integrand in the second last line is an even function of # and the
integrand in the last line is an odd function of #. Therefore
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So,
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12.4. The function el¥ >~ has an isolated singularity at 0. Writing the
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Laurent series of e[ (=—1)] as

o

elz(==2)] = Z Jo(w)z", z e C—{0},

we have
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Let C be the unit circle centered at the origin and oriented once in the
counterclockwise direction. Parametrizing C' by 2* with 0 < 6 < 27, we
get
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for all n € Z. Now, by periodicity,
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In the last line, the first integrand is an even function of § and the second
integrand is an odd function of §. Therefore
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for all n € Z.

12.6.(a) Writing
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we see that the isolated singularities are 0 and +¢. Since % is holo-
morphic on a neighborhood of 0, we can write it as a power series centered

at 0. So,
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Let z = 0. Then we see that ag = 0. Therefore

2
=ag+ a1z +agz” +---.

Z5

2(z+1)(z —1)

=a;t+agxz+---.



So,
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Therefore 0 is a removable singularity. Similarly, we can show that +i are
simple poles.

(b) 0 is the only isolated singularity of z*sin (%) We have
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Therefore 0 is an essential singularity.
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(c) Since &5 = ) (z—1)°

they are simple poles.

the only isolated singularities are 1 and —1 and
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13.1.(a) The isolated singularities of f(z) = rF are O and —1. O is a
simple pole and

Res(£,0) = lim(=f(2)) = liy -5 = 1

Now,
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(b). The only isolated singularity of f(z) = sin (5;) is 0. Since
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13.1.(a) Let f(z) = 32 = — 52“‘;2) Then f has two simple poles +2.
They are both inside C'. By éauchy s residue theorem,
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(b) Let f(2) = s+ The isolated singularities of f are nm with n € Z.
But only 0 is inside C. So,
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To compute Res(f,0), note that
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By long division,
1

z2sin 2

1
-3 —1
z z

Therefore

1
Res(f,0) = &
So,

/ ! dz = 2miRes(f,0) = ULy
c 3

z2sin z

(c) Let f(z) = e'/#sin(1). Then the only isolated singularity of f is 0.
Now,
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The coefficient of % is 1 Therefore
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