Solutions to Assignment 3

7.2. For $j=1,2, \ldots, n$, we pick $\gamma^{(j)}$ to be the multi-index with N in the $j^{\text {th }}$ position and zeros elsewhere. Then

$$
\sum_{|\gamma|=N}\left|z^{\gamma}\right|^{2}=\sum_{|\gamma|=N} z_{1}^{2 \gamma_{1}} z_{2}^{2 \gamma_{2}} \cdots z_{n}^{2 \gamma_{n}} \geq z_{j}^{2 N}
$$

for $j=1,2, \ldots, n$. Therefore

$$
\left\{\sum_{|\gamma|=N}\left|z^{\gamma}\right|^{2}\right\}^{1 / N} \geq z_{j}^{2}
$$

for $j=1,2, \ldots, n$. Summing over j from 1 to n, we get

$$
n\left\{\sum_{|\gamma|=N}\left|z^{\gamma}\right|^{2}\right\}^{1 / N} \geq \sum_{j=1}^{n}\left|z_{j}\right|^{2}=|z|^{2}
$$

and hence

$$
n^{N} \sum_{|\gamma|=N}\left|z^{\gamma}\right|^{2} \geq|z|^{2 N} .
$$

8.4. Let $T_{\lambda_{1}}=T_{\sigma} T_{\tau}$ and $T_{\lambda_{2}}=T_{\tau} T_{\sigma}$. Then

$$
T_{\sigma} T_{\tau}-T_{\tau} T_{\sigma}=T_{\lambda_{1}-\lambda_{2}} .
$$

By the product formula with $N=1$,

$$
\lambda_{1}-\sigma \tau \in S^{m_{1}+m_{2}-1}
$$

and

$$
\lambda_{2}-\tau \sigma \in S^{m_{1}+m_{2}-1} .
$$

Therefore

$$
\lambda_{1}-\lambda_{2} \in S^{m_{1}+m_{2}-1} .
$$

9.1. Suppose that a pseudo-differential operator T_{σ} has two formal adjoints T_{1} and T_{2}. Then for all φ and ψ in \mathcal{S},

$$
\left(T_{1} \varphi, \psi\right)=\left(\varphi, T_{\sigma} \psi\right)
$$

and

$$
\left(T_{2} \varphi, \psi\right)=\left(\varphi, T_{\sigma} \psi\right)
$$

So,

$$
\left(\left(T_{1}-T_{2}\right) \varphi, \psi\right)=0
$$

Therefore

$$
\left(T_{1}-T_{2}\right) \varphi=0, \quad \varphi \in \mathcal{S}
$$

and hence $T_{1}-T_{2}=0$, i.e., $T_{1}=T_{2}$.
9.2. For all φ and ψ in \mathcal{S},

$$
\left(\left(\left(T_{\sigma}\right)^{*}\right)^{*} \varphi, \psi\right)=\left(\varphi, T_{\sigma}^{*} \psi\right)=\left(T_{\sigma} \varphi, \psi\right) .
$$

Therefore $\left(T_{\sigma}^{*}\right)^{*}=T_{\sigma}$. Also

$$
\left(\left(T_{\sigma} T_{\tau}\right)^{*} \varphi, \psi\right)=\left(\varphi, T_{\sigma} T_{\tau} \psi\right)=\left(T_{\sigma}^{*} \varphi, T_{\tau} \psi\right)=\left(T_{\tau}^{*} T_{\sigma}^{*} \varphi, \psi\right)
$$

Therefore $\left(T_{\sigma} T_{\tau}\right)^{*}=T_{\tau}^{*} T_{\sigma}^{*}$.
10.1. (i) Suppose that $P(x, D)$ is elliptic. Then there exist positive constants C and R such that

$$
|P(x, \xi)| \geq C(1+|\xi|)^{m}, \quad|\xi| \geq R .
$$

So, we can find another positive constant C^{\prime} such that

$$
\begin{aligned}
\left|P_{m}(x, \xi)\right| & =\left|P(x, \xi)-\sum_{|\alpha|<m} a_{\alpha}(x) \xi^{\alpha}\right| \\
& \geq|P(x, \xi)|-\left|\sum_{|\alpha|<m} a_{\alpha}(x) \xi^{\alpha}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \geq|P(x, \xi)|-\sum_{|\alpha|<m}\left|a_{\alpha}(x)\right|(1+|\xi|)^{|\alpha|} \\
& \geq C(1+|\xi|)^{m}-C^{\prime}(1+|\xi|)^{m-1} \\
& =C(1+|\xi|)^{m}\left(1-\frac{C^{\prime}}{C}(1+|\xi|)^{-1}\right)
\end{aligned}
$$

whenever $|\xi| \geq R$. Hence there exists another positive constant R^{\prime} such that

$$
\left|P_{m}(x, \xi)\right| \geq \frac{C}{2}(1+|\xi|)^{m}, \quad|\xi| \geq R^{\prime}
$$

Conversely, suppose that there exist positive constants C and R such that

$$
\left|P_{m}(x, \xi)\right| \geq C(1+|\xi|)^{m}, \quad|\xi| \geq R .
$$

Then

$$
|P(x, \xi)|=\left|P_{m}(x, \xi)+\sum_{|\alpha|<m} a_{\alpha}(x) \xi^{\alpha}\right| \geq|P(x, \xi)|-\sum_{|\alpha|<m}\left|a_{\alpha}(x)\right|(1+|\xi|)^{|\alpha|}
$$

for all x and ξ in \mathbb{R}^{n} and the proof is then similar to that of the direct implication. (ii) Suppose that $P(D)$ is elliptic. Then there exist positive constants such that

$$
\left|P_{m}(\xi)\right| \geq C|\xi|^{m}, \quad|\xi| \geq R .
$$

Let $\eta \in \mathbb{R}^{n}$ be such that $P_{m}(\eta)=0$. Suppose that $\eta \neq 0$. Since

$$
P_{m}(\eta)=|\eta|^{m} P_{m}\left(\eta^{\prime}\right),
$$

we see that $P_{m}\left(\eta^{\prime}\right)=0$. But for all positive numbers t with $t \geq R$,

$$
t^{m}\left|P_{m}\left(\eta^{\prime}\right)\right|=\left|P_{m}\left(t \eta^{\prime}\right)\right| \geq C t^{m}
$$

Therefore

$$
\left|P_{m}\left(\eta^{\prime}\right)\right| \geq C>0
$$

and this is a contradiction. Conversely, for all ξ^{\prime} in \mathbb{R}^{n} with $\left|\xi^{\prime}\right|=1$, we get

$$
P_{m}\left(\xi^{\prime}\right) \neq 0 .
$$

Since $\left\{\xi^{\prime} \in \mathbb{R}^{n}:\left|\xi^{\prime}\right|=1\right\}$ is compact, it follows that there is a positive constant C such that

$$
\left|P_{m}\left(\xi^{\prime}\right)\right| \geq C, \quad\left|\xi^{\prime}\right|=1
$$

Thus, there exists a positive constant R such that

$$
\left|P_{m}(\xi)\right|=|\xi|^{m}\left|P_{m}\left(\xi^{\prime}\right)\right| \geq C(1+|\xi|)^{m}, \quad|\xi| \geq R .
$$

Therefore $P(D)$ is elliptic.
10.2. We assume that $\sigma \in S^{m_{1}}$ and $\tau \in S^{m_{2}}$. Then $T_{\sigma} T_{\tau}=T_{\lambda}$, where

$$
\lambda \sim \sum_{\mu} \frac{(-i)^{|\mu|}}{\mu!}\left(\partial_{\xi}^{\mu} \sigma\right)\left(\partial_{x}^{\mu} \tau\right) .
$$

Thus, $\lambda-\sigma \tau \in S^{m_{1}+m_{2}-1}$. So, there exist positive constants C, C^{\prime} and R such that for all ξ with $|\xi|>R$,

$$
\begin{aligned}
|\lambda(x, \xi)| & =|\sigma(x, \xi) \tau(x, \xi)+\lambda(x, \xi)-\sigma(x, \xi) \tau(x, \xi)| \\
& \geq C(1+|\xi|)^{m_{1}+m_{2}}-|\lambda(x, \xi)-\sigma(x, \xi) \tau(x, \xi)| \\
& \geq C(1+|\xi|)^{m_{1}+m_{2}}-C^{\prime}(1+|\xi|)^{m_{1}+m_{2}-1} \\
& =C(1+|\xi|)^{m_{1}+m_{2}}\left\{1-\frac{C^{\prime}}{C}(1+|\xi|)^{-1}\right\} .
\end{aligned}
$$

Thus, there is a positive constant R^{\prime} such that

$$
|\lambda(x, \xi)| \geq \frac{C}{2}(1+|\xi|)^{m_{1}+m_{2}}, \quad|\xi| \geq R^{\prime}
$$

Therefore $T_{\sigma} T_{\tau}$ is elliptic.
10.3. We suppose that $\sigma \in S^{m}$. Then $T_{\sigma}^{*}=T_{\tau}$, where $\tau \in S^{m}$ and

$$
\tau \sim \sum_{\mu} \frac{(-i)^{|\mu|}}{\mu!} \partial_{x}^{\mu} \partial_{\xi}^{\mu} \bar{\sigma}
$$

So, $\tau-\bar{\sigma} \in S^{m-1}$. Therefore there exist positive constants C, C^{\prime} and R such that

$$
\begin{aligned}
|\tau(x, \xi)| & =|\bar{\sigma}(x, \xi)+\tau(x, \xi)-\bar{\sigma}(x, \xi)| \\
& \geq C(1+|\xi|)^{m}-C^{\prime}(1+|\xi|)^{m-1} \\
& =C(1+|\xi|)^{m}\left\{1-\frac{C}{C^{\prime}}(1+|\xi|)^{-1}\right\}
\end{aligned}
$$

for all ξ with $|\xi| \geq R$. Thus, there is a positive constant R^{\prime} such that

$$
|\tau(x, \xi)| \geq \frac{C}{2}(1+|\xi|)^{m}, \quad|\xi| \geq R^{\prime}
$$

Thus, T_{σ}^{*} is elliptic.
10.4. Let T_{σ} be an elliptic pseudo-differential operator with parametrices T_{τ} and $T_{\tau^{\prime}}$. Then there exist infinitely smoothing operators R and S such that

$$
T_{\tau} T_{\sigma}=I+R
$$

and

$$
T_{\sigma} T_{\tau^{\prime}}=I+S
$$

Therefore

$$
T_{\tau} T_{\sigma} T_{\tau^{\prime}}=T_{\tau^{\prime}}+R T_{\tau^{\prime}}
$$

and hence

$$
T_{\tau}(I+S)=T_{\tau^{\prime}}+R T_{\tau^{\prime}}
$$

Thus,

$$
T_{\tau}-T_{\tau^{\prime}}=R T_{\tau^{\prime}}-T_{\tau} S
$$

and we are done.
10.5. The answer is yes. Indeed, let T_{τ} be a parametrix of an elliptic pseudo-differential operator T_{σ}. Then T_{σ} is a parametrix of T_{τ}. Thus, T_{τ} is elliptic.
10.10. Let $P(D)=\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}$ be an elliptic linear partial differential operator with constant coefficients. Its symbol is

$$
P(\xi)=\sum_{|\alpha| \leq m} a_{\alpha} \xi^{\alpha}, \quad \xi \in \mathbb{R}^{n}
$$

By ellipticity, there exist positive constants C and R such that

$$
|P(\xi)| \geq C(1+|\xi|)^{m}, \quad|\xi| \geq R
$$

Let $\psi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ be such that

$$
\psi(\xi)= \begin{cases}1, & |\xi| \geq 2 R \\ 0, & |\xi| \leq R\end{cases}
$$

Let τ be the function on \mathbb{R}^{n} such that

$$
\tau(\xi)=\left\{\begin{aligned}
\frac{\psi(\xi)}{P(\xi)}, & |\xi| \geq R \\
0, & |\xi| \leq R
\end{aligned}\right.
$$

Then $\tau \in S^{-m}$ and

$$
T_{\tau} T_{P}=T_{\tau P}
$$

But

$$
\tau(\xi) P(\xi)=\left\{\begin{aligned}
\frac{\psi(\xi)}{P(\xi)}, & |\xi| \geq R \\
0, & |\xi|<R
\end{aligned}\right.
$$

Let φ be the function on \mathbb{R}^{n} defined by

$$
\varphi(\xi)=1-\psi(\xi), \quad \xi \in \mathbb{R}^{n}
$$

Then $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and

$$
\tau(\xi) P(\xi)=1-\varphi(\xi), \quad \xi \in \mathbb{R}^{n}
$$

Therefore

$$
T_{\tau} T_{P}=I+T_{-\varphi} .
$$

Since $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, it follows that $T_{-\varphi}$ is infinitely smoothing. Therefore T_{τ} is a left parametrix and hence a parametrix.

