Answers to Assignment 5

11.1. We see that Log1 = 0 and
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Thus, the Taylor series of Log z at 1 is
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and the largest disk of convergence is {z € C: |z — 1] < 1}.

11.2. Since for all w € C, the Maclaurin series of e is
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it follws that e** has Maclaurin series
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11.3. Write the power series as
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But for |z| < 1

We have seen that for |z| < 1,
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and the radius of convergence is 1.

11.4. Since
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Using Hadamard’s formula,
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11.5. Separating the evens from the odds, we have for |z| < %
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