Answers to Assignment 5

11.1. We see that $\log 1=0$ and

$$
\frac{d^{n}}{d z^{n}}(\log 1)=(-1)^{n+1}(n-1)!, \quad n=1,2, \ldots
$$

Thus, the Taylor series of $\log z$ at 1 is

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(n-1)!}{n!}(z-1)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n!}(z-1)^{n}
$$

and the largest disk of convergence is $\{z \in \mathbb{C}:|z-1|<1\}$.
11.2. Since for all $w \in \mathbb{C}$, the Maclaurin series of e^{w} is

$$
\sum_{n=0}^{\infty} \frac{1}{n!} w^{n}
$$

it follws that $e^{z^{2}}$ has Maclaurin series

$$
\sum_{n=0}^{\infty} \frac{1}{n!} z^{2 n}
$$

11.3. Write the power series as

$$
\sum_{n=0}^{\infty} n^{2} z^{n}=z^{2} \sum_{n=0}^{\infty} n(n-1) z^{n-2}+z \sum_{n=0}^{\infty} n z^{n-1}
$$

But for $|z|<1$

$$
\begin{aligned}
& \sum_{n=0}^{\infty} n(n-1) z^{n-2} \\
= & \frac{d^{2}}{d z^{2}} \sum_{n=0}^{\infty} z^{n} \\
= & \frac{d^{2}}{d z^{2}}\left(\frac{1}{1-z}\right) \\
= & \frac{d}{d z}\left(\frac{1}{(1-z)^{2}}\right) \\
= & \frac{2}{(1-z)^{3}}
\end{aligned}
$$

We have seen that for $|z|<1$,

$$
\begin{aligned}
\sum_{n=0}^{\infty} n z^{n-1} & =\frac{d}{d z} \sum_{n=0}^{\infty} z^{n} \\
& =\frac{d}{d z} \frac{1}{1-z}=\frac{1}{(1-z)^{2}}
\end{aligned}
$$

Therefore

$$
\sum_{n=0}^{\infty} n^{2} z^{n}=\frac{2 z^{2}}{(1-z)^{3}}+\frac{z}{(1-z)^{2}}
$$

and the radius of convergence is 1 .
11.4. Since

$$
\varlimsup_{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|^{n}}==\inf _{k \geq 1} \sup _{n \geq k} \sqrt[n]{\left|a_{n}\right|^{n}}=2
$$

Using Hadamard's formula,

$$
R=\frac{1}{\overline{\lim }_{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|^{n}}}=\frac{1}{2}
$$

11.5. Separating the evens from the odds, we have for $|z|<\frac{1}{2}$,

$$
\sum_{n=0}^{\infty} a_{n} z^{n}=\sum_{n=0}^{\infty} 2^{2 n} z^{2 n}+\sum_{n=0}^{\infty} z^{2 n+1}
$$

But

$$
\sum_{n=0}^{\infty} 2^{2 n} z^{2 n}=\sum_{n=0}^{\infty}\left(4 z^{2}\right)^{n}=\frac{1}{1-4 z^{2}}
$$

And

$$
\sum_{n=0}^{\infty} z^{2 n+1}=z \sum_{n=0}^{\infty} z^{2 n}=\frac{z}{1-z^{2}}
$$

Therefore

$$
\sum_{n=0}^{\infty} a_{n} z^{n}=\frac{1}{1-4 z^{2}}+\frac{z}{1-z^{2}}
$$

