Answers to Assignment 3

5.2. For all functions ¢,9 € § and all complex numbers a,b € C,

(0°T)(ap + b)) = (=1)PIT(8*(ap + by)))

= (=Dl (ad%p + b))
a(=1) T (%) + (=1 T (9°9)

= a(@°T)(p) +b(0°T)(¥).

Therefore 0“7 is a linear functional on S. Let {}52, be a sequence in S
such that ¢; — 0in S as j — 0o. Then

(0°T)(p;) = (1) T(0%¢;) — 0

as j — 0o because
8ag0j — 0

in S as j — oo and T is a tempered distribution.

5.3 For all p € S,

(D)) =

Therefore (D*0)" = (2m)~"/2z°.



5.5. For all p € S,
flo) = £

= / aso
R™

—_= / DOCSO
R™

(
<27r>"/2<Da )(0)
— (2m)"/25(D%y)
(2m)"2(=1)°(D?6) ().

—~

Therefore )
f=(@m)"?(-1)Des.

5.6. We begin with (c). For all ¢ € S,
flo) = f(®)
= / e (x) dx

= (2m)7? /_ Z el ( /_ Z e o(y) dy) dx
= / Z o(y) ((27r)‘1/ ? / Z gllamv)e dw) dy

= (2m)'? /Oo 5(a—1y)e(y) dy

where §_, is the translation of § defined by

0-a(p) = pla), p€S.
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Therefore )
f=(2n)"%._,.

(a) Since
cos T = ailand i
= R
it follows from (c) that
- )
f= (gﬂ)lﬂg — 1(571 +0y).
2 2
(b) Since
. T e—z’m
sin z = —
21
we get

5.11. For all p € S,

(DT)" () = (DT)($)
— (~)T(D)
= (~D)IT(((~))")
= (~)"T((~a))
= (2"T)(p).
Therefore
(DTN = 2°T.

5.12. We use the regularity theorem on page 38 to the effect that T'= D f
for some multi-index a and some continuous tempered function f on R™.



Then for all ¢ € S,
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Therefore



