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Abstract We compute the sub-Laplacian on the Heisenberg group with
multi-dimensional center. By taking the inverse Fourier transform with
respect to the center, we get the parametrized twisted Laplacians. Then
by means of the special Hermite functions, we find the eigenfunctions and
the eigenvalues of the twisted Laplacians. The explicit formulas for the heat
kernels and Green functions of the twisted Laplacians can then be obtained.
Then we give an explicit formula for the heat kernal and Green function of
the sub-Laplacian on the Heisenberg group with multi-dimensional center.
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1 Introduction

The Heisenberg group is the simplest non-commutative nilpotent Lie group.
Analysis on the Heisenberg group is a subject of continuing interest in var-
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ious areas of mathematics from Partial Differential Equations to Geometry
to Number Theory.

The Heisenberg group Hn is the set Rn × Rn × R equipped with the
binary operation · given by

(z, t) · (z′, t′) =

(
z + z′, t+ t′ +

1

2

n∑
j=1

(xjy
′
j − x′jyj)

)
,

for all z = (x, y), z′ = (x′, y′) in Rn×Rn and t, t′ in R. The center Z of the
Heisenberg group Hn is the one-dimensional subgroup given by

Z = {(0, 0, t) ∈ Rn × Rn × R : t ∈ R} .

In this paper, we look at a class of Heisenberg groups with multi-dimensional
center related to Partial Differential Equations. The Heisenberg group with
a one-dimensional center, well known as a model for a hypoelliptic partial
differential operator, suggests that we can envisage Heisenberg groups with
multi-dimensional center to be models for hypoelliptic partial differential
operators with higher complexities. To do this, we consider n×n orthogonal
matrices B1, B2, . . . , Bm such that

Bj
−1Bk = −B−1

k Bj, j 6= k.

Then we define the Heisenberg group G with multi-dimensional center G to
be the set Rn × Rn × Rm with the binary operation · defined by

(z, t) · (z′, t′) =

(
z + z′, t+ t′ +

1

2
[z, z′]

)
for all (z, t) and (z′, t′) in Rn × Rn × Rm, where z = (x, y) ∈ Rn × Rn,
z′ = (x′, y′) ∈ Rn × Rn, t, t′ ∈ Rm and [z, z′] ∈ Rm is defined by

[z, z′]j = x′ ·Bjy − x ·Bjy
′, j = 1, 2, . . . ,m.

The center of the Heisenberg group G with multi-dimensional center is of
dimension m and is given by {(0, 0, t) : t ∈ Rm}.

In fact, G is a unimodular Lie group on which the Haar measure is just
the ordinary Lebesgue measure dz dt. For more details, see [7]. Moreover,
Heisenberg groups with multi-dimensional center are special cases of the so-
called Heisenberg type groups or H-type groups in [2, 4, 5]. The geometric
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properties of the H-type group are in, e.g., [5]. Note that if we let m = 1 and
B1 = −In, where In is the n× n identity matrix, then we get the ordinary
Heisenberg group Hn.

It is well known from [8] that Weyl transforms have intimate connec-
tions with analysis on the Heisenberg group and with the so-called twisted
Laplacian. We begin with a recall of the basic definitions and properties of
Weyl transforms and Wigner transforms in, for instance, the book [8].

Let σ ∈ L2(Rn×Rn). Then the Weyl transform Wσ : L2(Rn)→ L2(Rn)
is defined by

(Wσf, g)L2(Rn) = (2π)−n/2
∫

Rn

∫
Rn
σ(x, ξ)W (f, g)(x, ξ) dx dξ, f, g ∈ L2(Rn),

where W (f, g) is the Wigner transform of f and g defined by

W (f, g)(x, ξ) = (2π)−n/2
∫

Rn
e−iξ·pf

(
x+

p

2

)
g
(
x− p

2

)
dp, x, ξ ∈ Rn.

Closely related to the Wigner transform W (f, g) of f and g in L2(Rn) is the
Fourier–Wigner transform V (f, g) given by

V (f, g)(q, p) = (2π)−n/2
∫

Rn
eiq·yf

(
y +

p

2

)
g
(
y − p

2

)
dy, q, p ∈ Rn.

It is easy to see that that

W (f, g) = V (f, g)∧

for all f and g in L2(Rn), where ∧ denotes the Fourier transform given by

F̂ (ξ) = (2π)−n/2
∫

Rn
e−ix·ξF (x) dx, ξ ∈ Rn,

for all F in L1(Rn).
In Section 2, We recall some of the results from [7]. We define the

Schrödinger representations of the Heisenberg group G with multi-dimensional
center. Then we define the λ-Wigner and λ-Weyl transform related to the
Heisenberg group G. The Moyal identity for the λ-Wigner transform and
Hilbert–Schmidt properties of the λ-Weyl transform are given. In Section
3, the sub-Laplacian on the Heisenberg group G is computed. Then by
taking the inverse Fourier transform with respect to the center, we get the
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parametrized twisted Laplacians. In Sections 4, 5, 6 and 7, the heat ker-
nels and the Green functions of the parametrized twisted Laplacians and
the sub-Laplacian on the Heisenberg group G with multi-dimensional center
are obtained.

This paper extends the results in [3, 9] and Chapters 17–23 in [10] from
the ordinary Heisenberg group to Heisenberg groups with multi-dimensional
center.

2 Schrödinger Representations of Heisenberg

Groups with Multi-Dimensional Center and

λ-Weyl Transforms

Let
Rm∗ = Rm \ {0}

and let λ ∈ Rm∗. We define the Schrödinger representation of G on L2(Rn)
by

(πλ(q, p, t)ϕ) (x) = eiλ·teiq·Bλ(x+p/2)ϕ(x+ p), x ∈ Rn,

for all ϕ ∈ L2(Rn) and (q, p, t) ∈ G, where z = (q, p) ∈ Rn × Rn and
Bλ =

∑m
j=1 λjBj. For all (q, p) ∈ Rn × Rn and ϕ ∈ L2(Rn), if we define

ρ(q, p)ϕ to be the function on Rn by

(πλ(q, p)ϕ) (x) = eiq·Bλ(x+p/2)ϕ(x+ p), x ∈ Rn,

then
πλ(q, p, t) = eiλ·tπλ(q, p), t ∈ Rm.

We have the Stone–von Neumann theorem stating that any irreducible
and unitary representation of G on a Hilbert space that is non-trivial on
the center is equivalent to some πλ. More precisely, we have the following
result.

Theorem 2.1 Let Πλ be an irreducible and unitary representation of G on
a Hilbert space H such that Πλ(0, 0, t) = eiλ·tI, for some λ ∈ Rm, where I
is the identity operator on H. Then Πλ is unitarily equivalent to πλ.
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We define the λ-Fourier–Wigner transform V λ(f, g) of f and g in L2(Rn)
to be the function on Rn × Rn by

V λ(f, g)(q, p) = (2π)−n/2 (πλ(q, p)f, g) , q, p ∈ Rn.

In fact,

V λ(f, g)(q, p) = (2π)−n/2
∫

Rn
ei(B

t
λq)·xf

(
x+

p

2

)
g
(
x− p

2

)
dx, q, p ∈ Rn.

It is easy to see that the λ-Fourier–Wigner transform is related to the ordi-
nary Fourier–Wigner transform by

V λ(f, g)(q, p) = V (f, g)(Bt
λq, p), q, p ∈ Rn.

Note that
V λ(f, g)(q,−p) = V λ(g, f)(q, p), q, p ∈ Rn.

Now, we define the λ-Wigner transform W λ(f, g) of f and g in L2(Rn) to
be the Fourier transform of V λ(f, g). In fact, the λ-Wigner transform has
the form

W λ (f, g) (x, ξ) = |λ|−n(2π)−n/2
∫

Rn
e−ip·ξf

(
Bt
λx

|λ|2
+
p

2

)
g

(
Bt
λx

|λ|2
− p

2

)
dp

for all x and ξ in Rn, and and it is related to the ordinary Wigner trasform
by

W λ(f, g)(x, ξ) = |λ|−nW (f, g)

(
Bt
λx

|λ|2
, ξ

)
for all x, ξ in Rn. Moreover,

W λ(f, g) = W λ(g, f), f, g ∈ L2(Rn).

Let σ ∈ S(Rn × Rn) and f ∈ S(Rn). Then we define the λ-Weyl trans-
form W λ

σ f of f corresponding to the symbol σ by(
W λ
σ f, g

)
L2(Rn)

= (2π)−n/2
∫

Rn

∫
Rn
σ(x, ξ)W λ(f, g)(x, ξ) dx dξ,

for all g ∈ S(Rn). Therefore using Parseval’s identity, we have(
W λ
σ f, g

)
L2(Rn)

= (2π)−n/2
∫

Rn

∫
Rn
σ̂(q, p)V λ(f, g)(q, p) dq dp.
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Hence, formally, we can write(
W λ
σ f
)

(x) = (2π)−n
∫

Rn

∫
Rn
σ̂(q, p) (πλ(q, p)f) (x) dq dp, x ∈ Rn.

Proposition 2.2 Let σ ∈ S(Rn × Rn). Then the λ-Weyl transform W λ
σ is

given by
W λ
σ = Wσλ ,

where Wσλ is the ordinary Weyl transform corresponding to the symbol σλ
given by

σλ(x, ξ) = σ(Bλx, ξ), x, ξ ∈ Rn.

Proposition 2.3 Let σ ∈ S(Rn × Rn). Then the λ-Weyl transform W λ
σ is

a Hilbert–Schmidt operator with kernel

kλσ(x, p) = (F2σ)

(
Bλ

(
x+ p

2

)
, p− x

)
, x, p ∈ Rn,

where F2σ is the ordinary Fourier transform of σ with respect to the second
variable, i.e.,

(F2σ) (x, p) = (2π)−n/2
∫

Rn
e−iξ·pσ(x, ξ) dξ, x, p ∈ Rn.

Moreover,
‖W λ

σ ‖HS = |λ|−n/2‖σ‖L2(Rn×Rn),

where ‖W λ
σ ‖HS is the Hilbert–Schmidt norm of W λ

σ .

Let F and G be functions in L2(R2n). Then the λ-twisted convolution
F ∗λ G of F and G is the function on R2n defined by

(F ∗λ G)(z) =

∫
R2n

F (z − w)G(w)e
i
2
λ·[z,w] dw, z ∈ R2n,

provided that the integral exists.

Theorem 2.4 Let σ and τ be in L2(R2n). Then

W λ
σW

λ
τ = W λ

ω ,

where ω ∈ L2(R2n) and ω̂ = (2π)−n(σ̂ ∗λ τ̂).
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We have the following Moyal identity for the λ-Wigner transform and
λ-Fourier–Wigner transform.

Proposition 2.5 For all f1, f2, g1, g2 in L2(Rn),(
W λ(f1, g1),W

λ(f2, g2)
)

= |λ|−n (f1, f2) (g1, g2)

and (
V λ(f1, g1), V

λ(f2, g2)
)

= |λ|−n (f1, f2) (g1, g2).

3 Sub-Laplacians on Heisenberg Groups with

Multi-Dimensional Center

Let g be the Lie algebra of all left-invariant vector fields on G. For j =
1, 2, . . . ,m, let γ1,j : R→ G and γ2,j : R→ G be curves in G given by

γ1,j(r) = (rej, 0, 0)

and
γ2,j(r) = (0, rej, 0)

for all r ∈ R, where ej is the standard unit vector in Rn. For all k =
1, 2, . . . ,m, let γ3,k : R→ G be curves in G given by

γ3,k(r) = (0, 0, rek)

for all r ∈ R, where ek is the standard unit vector in Rm. Then we define
the left-invariant vector fields Xj, Yj and Tk, j = 1, 2, . . . , n, k = 1, 2, . . . ,m,
on G as follows. Let f ∈ C∞(G). Then for all j = 1, 2, . . . , n, we define Xj

and Yj by

(Xjf) (x, y, t) =
d

ds
f((x, y, t) · γ1j(s))

∣∣∣∣
s=0

=
d

ds
f

(
x+ sej, y,

(
tk +

1

2
(Bky, sek)

)m
k=1

)∣∣∣∣
s=0

=
∂f

∂xj
(x, y, t) +

1

2

m∑
k=1

(Bky, ej)
∂f

∂tk
(x, y, t)
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and

(Yjf) (x, y, t) =
d

ds
f((x, y, t) · γ2j(s))

∣∣∣∣
s=0

=
d

ds
f

(
x, y + sej,

(
tk −

1

2
(x, sBkej)

)m
k=1

)∣∣∣∣
s=0

=
∂f

∂yj
(x, y, t)− 1

2

m∑
k=1

(x,Bkej)
∂f

∂tk
(x, y, t)

for all (x, y, t) ∈ G. Similarly, for k = 1, 2, . . . ,m, the function Tkf is defined
by

(Tkf) (x, y, t) =
d

ds
f((x, y, t) · γ3k(s))

∣∣∣∣
s=0

=
d

ds
f(x, y, t+ sek)

∣∣∣∣
s=0

=
∂f

∂tk
(x, y, t)

for all (x, y, t) ∈ G. We can easily check that

[Xi, Yj] = −
m∑
k=1

(Bk)ijTk, i, j = 1, 2, . . . , n,

and the other commutators are zero. Therefore G is a nipotenet Lie group
of step two.

Theorem 3.1 The Lie algebra g is generated by {Xi, Yj, [Xi, Yj] : i, j =
1, 2, . . . , n}.

Proof It is enough to show that

span{T1, T2, . . . , Tm} = span{[Xi, Xj] : i, j = 1, 2, . . . , n}.

Let

T =


T1

T2

...

Tm


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and

Z =



[X1, Y1]

[X1, Y2]
...

[X1, Yn]

[X2, Y1]

[X2, Y2]
...

[Xn, Yn].


For 1 ≤ k ≤ m and 1 ≤ i, j ≤ n, let (Bk)ij be the entry of the matrix Bk in
the ith row and jth column. Consider the n2 ×m matrix

C =



(B1)11 (B2)11 . . . (Bm)11

(B1)12 (B2)12 . . . (Bm)12

...
...

. . .
...

(B1)1n (B2)1n . . . (Bm)1n

(B1)21 (B2)21 . . . (Bm)21

(B1)22 (B2)22 . . . (Bm)22

...
...

...
...

(B1)nn (B2)nn . . . (Bm)nn



.

Then CT = −Z. Since C has full column rank, it follows that there exists
a an m× n2 matrix (left inverse) D such that

DC = I

where I is the m×m identity matrix. Therefore

T = DY.
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We can now define the sub-Laplacian L on G by

L = −
n∑
j=1

(
X2
j + Y 2

j

)
.

Explicitly,

L = −∆x −∆y −
1

4

(
|x|2 + |y|2

)
∆t

+
m∑
k=1

n∑
j=1

{
−(Bky, ej)

∂

∂xj
+ (x,Bkej)

∂

∂yj

}
∂

∂tk
.

By taking the inverse Fourier transform of the sub-laplacian L with respect
to t, we get parametrized twisted Laplacians Lλ, λ ∈ Rm, given by

Lλ = −∆x −∆y +
1

4

(
|x|2 + |y|2

)
|λ|2

−i
n∑
j=1

{
−(Bλy, ej)

∂

∂xj
+ (x,Bλej)

∂

∂yj

}
.

4 Spectral Analysis of λ-Twisted Laplacians

For k = 0, 1, 2, . . . , the Hermite function of order k is the function ek on R
defined by

ek(x) =
1

(2kk!
√
π)1/2

e−x
2/2Hk(x), x ∈ R,

where Hk is the Hermite polynomial of degree k given by

Hk(x) = (−1)kex
2

(
d

dx

)k
(e−x

2

), x ∈ R.

For any multi-index α = (α1, α2, . . . , αm), we define the function eα on Rn

by eα = eα1 ⊗ eα2 ⊗· · ·⊗ eαn . We fix a nonzero vector λ ∈ Rm. Let α and β
be multi-indices in (N ∪ {0})n. Then we define the special Hermite function
eλα,β on Rn × Rn by

eλα,β(q, p) = |λ|n/2Vλ(eα, eβ)

(
q√
|λ|
,
√
|λ|p

)
, q, p ∈ Rn.
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In fact, eλα,β is given by

eλα,β(q, p) = |λ|n/2V (eλα, e
λ
β)(q,

√
|λ|p), q, p ∈ Rn,

where
eλα(x) = |λ|n/4eα(

√
|λ|x), x ∈ Rn.

Using the fact that {ek : k = 0, 1, . . . } is an orthonormal basis for L2(R) and
the Moyal identity for the λ-Fourier–Wigner transform, we get the following
result.

Proposition 4.1 {eλα,β : α, β ∈ (N ∪ {0})n} is an orthonormal basis for
L2(R2n).

For l = 1, 2, . . . , n, we define the linear partial differential operators Zλ
l and

Z̄λ
l by

Zλ
l =

1

|λ|

n∑
j=1

(Bλ)jl
∂

∂xj
− i ∂

∂yl
+

1

2
(Bt

λx)l −
i|λ|
2
yl

and

Z̄λ
l =

1

|λ|

n∑
l=1

(Bλ)jl
∂

∂xj
+ i

∂

∂yl
− 1

2
(Bt

λx)l −
i|λ|
2
yl.

Then

Lλ = −1

2

n∑
l=1

(Zλ
l Z̄

λ
l + Z̄λ

l Z
λ
l ).

In the following lemma, el is the standard unit vector in Rn.

Lemma 4.2 For all l = 1, 2, . . . , n, and for all multi-indices α and β,

(i) Zλ
l e

λ
α,β = i|λ|n/2(2βl)1/2eλα,β−el , βl 6= 0,

(ii) Z̄λ
l e

λ
α,β = i|λ|n/2(2βl + 2)1/2eλα,β+el

.

Theorem 4.3 For all multi-indices α and β in (N ∪ {0})n,

Lλeλα,β = |λ|n(2|β|+ n)eλα,β.
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5 Heat Kernels of the λ- Twisted Laplacians

In this section, we are interested in finding the heat kernel of Lλ, which
is the kernel of the integral operator e−τL

λ
, τ > 0. We need the following

theorem that follows from the Moyal identity and Theorem 2.4.

Theorem 5.1 For all multi-indices α, β, µ and ν

eλα,γ ∗λ eλβ,ν = (2π)n/2|λ|−n/2δβ,γeλα,ν ,

where δβ,α is the Kronecker delta function.

Theorem 5.2 For all f ∈ L2(R2n) and all τ > 0,

e−τL
λ

f = kτ ∗−λ f,

where

kλτ (z) = (2π)−n
|λ|n

[2 sinh(|λ|nτ)]n
e−

1
4
|λ||z|2 coth(|λ|nτ)

for all z ∈ R2n.

Proof Let f ∈ S(R2n) and τ > 0. Then by Theorem 4.3,

e−τL
λ

f =
∑
β

e−τ |λ|
n(2|β|+n)

∑
α

(
f, eλα,β

)
L2(R2n)

eλα,β.

By Theorem 5.1

f ∗λ eλβ,β =
∑
α

∑
γ

(
f, eλα,γ

)
L2(R2n)

eλα,γ ∗λ eλβ,β

= (2π)n/2|λ|−n/2
∑
α

∑
γ

(
f, eλα,γ

)
L2(R2n)

δγ,βe
λ
α,β

= (2π)n/2|λ|−n/2
∑
α

(
f, eλα,β

)
L2(R2n)

eλα,β

for all β ∈ (N ∪ {0})n. Thus,

e−τL
λ

f = (2π)−n/2|λ|n/2
∑
β

e−τ |λ|
n(2|β|+n)f ∗λ eλβ,β

= (2π)−n/2|λ|n/2
∑
β

e−τ |λ|
n(2|β|+n)eλβ,β ∗−λ f.
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To compute
∑

β e
−t|λ|n(2|β|+n)eλβ,β, we use Mehler’s formula. In fact,

eλβ,β(q, p) = |λ|n/2
n∏
j=1

eβj ,βj

(
(Bt

λq)j√
|λ|

,
√
|λ|pj

)
, q, p ∈ Rn,

where eβj ,βj is the ordinary Fourier–Wigner transform of the Hermite func-
tions eβj . Hence for all (q, p) ∈ Rn × Rn,∑

β

e−τ |λ|
n(2|β|+n)eλβ,β(q, p)

= |λ|n/2
n∏
j=1

 ∞∑
βj=0

e−(2βj+1)|λ|nτeβj ,βj

(
(Bt

λq)j√
|λ|

,
√
|λ|pj

) .

Now, by (23.7) in [8],

∞∑
βj=0

e−τ |λ|
n(2βj+1)eβj ,βj(qj, pj)

=
1√
2π

1

2 sinh(|λ|nτ)
e−

1
4
(|qj |2+|pj |2) coth(τ |λ|n)

for all (qj, pj) in R× R. So,∑
β

e−τ |λ|
n(2|β|+n)eλβ,β(q, p)

= |λ|n/2(2π)−n/2
1

[2 sinh(|λ|nτ)]n
e−

1
4
|λ||z|2 coth(τ |λ|n).

� Therefore the heat kernel κλτ of the λ-twisted Laplacian Lλis given by

κλτ (z, w) = kλτ (z − w)e−
i
2
λ·[z,w]

= (2π)−n
|λ|n

[2 sinh(|λ|nτ)]n
e−

1
4
|λ||z−w|2 coth(τ |λ|n)e−

i
2
λ.[z,w]

for all z and w in R2n.
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6 Green Functions of λ-Twisted Laplacians

In this section, we compute for all λ ∈ Rm∗ the kernel Gλ of the inverse
(Lλ)−1 of Lλ, which is known as the Green function of the Lλ. The Green
function Gλ is related to the heat kernel κλτ of Lλ by

Gλ(z, w) =

∫ ∞
0

κλτ (z, w) dτ, z, w ∈ R2n.

Let

gλ(z) =

∫ ∞
0

kλτ (z) dτ, z ∈ R2n.

Then the Green funciton Gλ of Lλ is given by

Gλ(z, w) = e−
i
2
λ·[z,w]gλ(z − w)

for all z, w in R2n.

Lemma 6.1 For all z in R2n,

gλ(z) =
(
√

2π)−n

2
√

2π

Γ(n/2)

(
√
|λ||z|)n−1

K(n−1)/2

(
1

4
|λ||z|2

)
,

where K(n−1)/2 is the modified Bessel function of order n−1
2

given by

K(n−1)/2(x) =

∫ ∞
0

e−x cosh δ cosh((n− 1)δ/2) dδ, x > 0.

Proof Let z ∈ R2n. Then

gλ(z) = (2π)−n
(
|λ|
2

)n ∫ ∞
0

1

sinhn(|λ|nτ)
e−

1
4
|λ||z|2 coth(|λ|nτ) dτ.

By a change of variable from τ to u where u = coth(|λ|nτ), we get

gλ(z) = (4π)−n
∫ ∞

1

(u2 − 1)n/2−1e−
1
4
|λ||z|2u du, z ∈ R2n.

By the formula at page 250 of the book [6] to the effect that∫ ∞
1

(u2 − 1)γ−1e−µu du =
1√
π

(
2

µ

)γ− 1
2

Γ(γ) Kγ− 1
2
(µ),
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where Kν is the modified Bessel function of order ν given by

Kν(x) =

∫ ∞
0

e−x cosh t cosh(νt) dt, x > 0.

So, for γ = n
2

and µ = 1
4
|λ||z|2, we have for all z ∈ R2n,∫ ∞

1

(u2−1)n/2−1e−
1
4
|λ||z|2u du =

2(3n−2)/2

√
π

Γ(n/2)

(|λ||z|2)(n−1)/2
K(n−1)/2

(
1

4
|λ||z|2

)
.

Hence we get the formula for the Green function, as asserted. �

Hence by (6.1), we get the following theorem.

Theorem 6.2 The Green function Gλ of the λ-twisted Laplacian Lλ is
given by

Gλ(z, w) =
(
√

2π)−n

2
√

2π
e−

i
2
λ·[z,w] Γ(n/2)

(
√
|λ||z|)(n−1)

K(n−1)/2

(
1

4
|λ||z|2

)
for all z, w ∈ R2n.

7 Heat Kernels and Green Functions of Sub-

Laplacians

In this section, we use the heat kernel κλτ of the λ-twisted Laplacian to find
the heat kernel of the sub-Laplacian by taking the Fourier transform with
respect to the parameter λ. To do this, we need some preparation. The
group convolution of two measurable functions f and g on G is defined by

(f ∗G g) (z, t) =

∫
G
f((z, t).G(w, s)−1)g(w, s) dw ds, z ∈ R2n, t ∈ Rm,

if the integral exists. Moreover, we denote by fλ the ordinary Fourier trans-
form of f with respect to the t variable evaluated at the point λ ∈ Rm.
More precisely,

fλ(z) = (2π)−m/2
∫

Rm
e−it·λf(z, t) dt, z ∈ R2n.

We need the following theorem.

15



Theorem 7.1 Let f and g be functions in L1(G). Then for all nonzero
λ ∈ Rm,

(f ∗G g)λ = (2π)m/2fλ ∗−λ gλ.

Proof For all z ∈ R2n,

(f ∗G g)λ = (2π)−m/2
∫

Rm
e−it·λ (f ∗λ g) (z, t)dt

= (2π)−m/2
∫

Rm
e−it·λ

(∫
R2n

∫
Rm

f

(
z − w, t− s− 1

2
[z, w]

)
g(w, s) dw ds

)
dt.

Let t′ = t− 1
2
[z, w]. Then

(f ∗G g)λ

= (2π)−m/2
∫

Rm

∫
Rm

∫
R2n

e−it
′·λf(z − w, t′ − s)g(w, s)e−

i
2
λ·[z,w] dw ds dt′.

On the other hand, for all z in R2n, we get

(fλ ∗−λ gλ) (z)

=

∫
R2n

fλ(z − w)gλ(w)e−
i
2
λ·[z,w] dw

= (2π)−m/2
∫

R2n

{∫
Rm

f(z − w, · − s)g(w, s) ds

}∧
(λ) e−

i
2
λ·[z,w] dw

= (2π)−m
∫

Rm

∫
Rm

∫
R2n

e−it·λf(z − w, t− s)g(w, s)e−
i
2
λ·[z,w] dw ds dt,

and the proof is complete. �

Now, we consider the initial-value problem given by ∂u
∂τ

(z, t, τ) = − (Lu) (z, t, τ),

u(z, t, 0) = f(z, t),

z ∈ R2n, t ∈ Rm, τ > 0,

z ∈ R2n, t ∈ Rm.

By taking the inverse Fourier transform with respect to t and evaluated at
λ, we get an initial-value problem for the heat equation governed by the
λ-twisted Laplacian Lλ, i.e.,

∂uλ
∂τ

(z, τ) = −
(
Lλuλ

)
(z, τ),

uλ(z, 0) = fλ(z),
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for all z ∈ R2n, τ > 0 and λ ∈ Rm∗. By Theorem 5.2,

uλ(z, τ) =
(
kλτ ∗−λ fλ

)
(z), z ∈ R2n, τ > 0,

for all λ ∈ Rm∗. Therfore by taking the Fourier transform with respect to
λ and evaluated at t, and using Theorem 7.1, we get the solution of the
initial-value problem governed by the sub-Laplacian given by

u(z, t, τ) = (2π)−m/2 (f ∗G Kτ ) (z, t), z ∈ R2n, t ∈ Rm, τ > 0,

where Kτ is the Fourier transform of the heat kernel of kλτ with respect to
λ and evaluated at t. So, the heat kernel of L is given in the following
theorem.

Theorem 7.2 For all f in L2(G), e−τLf = f ∗G Kτ , where

Kτ (z, t) = (2π)−(n+m)

∫
Rm

e−it·λ
|λ|n

[2 sinh(|λ|nτ)]n
e−

1
4
|λ||z|2 coth(|λ|nτ) dλ

for all (z, t) ∈ G.
Hence the heat kernel κτ of L is given by

κτ ((z, t), (w, s)) = Kτ

(
z − w, t− s+

1

2
[z, w]

)
for all (z, t) and (w, s) in G.

The Green function G of the sub-Laplacian L on the Heisenebrg group
G with multi-dimensional center is the kernel of L−1. More precisely, the
Green function G is given by

L−1f = f ∗G G

for all suitable functions f on G.
As in the case of the heat kernel of the sub-Laplacian L, the Green

function G is obtained by taking the Fourier transform of Gλ with respect
to λ and evaluated at t. Therefore by Lemma 6.1, we have the following
theorem.

Theorem 7.3 The Green function G of L is given by

G(z, t) =
cn
|z|n−1

∫
Rm

e−iλ·t
1

|λ|(n−1)/2
K(n−1)/2

(
1

4
|λ||z|2

)
dλ,

where

cn = (2π)−m
(
√

2π)−n

2
√

2π
Γ(n/2).
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