Mathematics 3271 3.0 Fall 2018

Assignment 3 Due Wednesday, October 31, 2018

- 1. Prove that a Hölder continuous function f of order $\alpha > 1$ on [a, b] has to be a constant function on [a, b].
- 2. Prove that the function f defined by f(x) = |x| for all x in $[-\pi, \pi]$ is Hölder continuous of order 1 at every point $x \in [-\pi, \pi]$.
- 3. Let f be the function on $[-\pi, \pi]$ defined by

$$f(x) = \begin{cases} \frac{\sin x}{|x|^{\alpha}}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$

where $\alpha \in (0,1]$. Does the Fourier series of f converge to f(x) for all $x \in [-\pi, \pi]$? If yes, give a proof. If no, explain why not.

- 4. Section 19 in Weinberger: 2, 5 (You do not have to compare the graphs of f(x) and $s_2(x)$.)
- 5. Section 20 in Weinberger: 4