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1 Introduction

Let f be a signal in L2(Rn). Then we can extract the frequency content of
f using the Fourier transform F given by

(Ff)(ξ) = f̂(ξ) = (2π)−n/2
∫
Rn

e−ix·ξf(x) dx

1This research was supported by grants from the Doctoral School of Sciences and
Innovative Technologies, Ph.D. Program in Mathematics of Università degli Studi di
Torino, and the Natural Sciences and Engineering Research Council of Canada.
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for all ξ ∈ Rn. The Fourier transform cannot provide any information on
the time/space localization of the frequencies. There are many ways of
getting time-frequency information from a signal. For example, we can use
the Gabor transform G defined by

(Gf)(b, ξ) = (2π)−n/2
∫
Rn

e−ix·ξf(x)e−|x−b|
2/2dx, b, ξ ∈ Rn. (1.1)

Instead of using the Gaussian window g given by

g(x) = e−|x|
2/2, x ∈ Rn,

in (1.1), we can take another suitable function ϕ in L2(Rn) and then we
have the short-time Fourier transform Gϕf of a signal f with respect to the
window ϕ given by

(Gϕf)(b, ξ) = (2π)−n/2
∫
Rn

e−ix·ξf(x)ϕ(x− b) dx, b, ξ ∈ Rn. (1.2)

The formula (1.2) can be written as

(Gϕf)(b, ξ) = e−ib·ξ(F−1
ζ 7→bfξ)(b), (1.3)

where
fξ(ζ) = f̂(ζ)ϕ̂(ζ − ξ), ζ ∈ Rn.

The formula (1.3) tells us that we can obtain the short-time Fourier trans-
form of a signal f by taking the Fourier transform of the signal itself, cutting
it by the conjugate of the Fourier transform of the window ϕ and then tak-
ing the inverse Fourier transform. It is possible to invert the short-time
Fourier transform using the following theorem.

Theorem 1.1 Let f be a signal in L2(Rn) and let ϕ be a window in L1(Rn)∩
L2(Rn) such that ∫

Rn

ϕ(x) dx = 1.

Then

f̂(ξ) =

∫
Rn

(Gϕf)(b, ξ) db, ξ ∈ Rn.

2



Theorem 1.1 follows easily from the definition of the Fourier transform
and the proof is exactly the same as that of Theorem 3.1 in [2].

Let us note that the Gabor transform Gϕf of f can be written as

Gϕ = (2π)−n/2(f,MξT−bϕ)L2(Rn), b, ξ ∈ Rn,

where ( , )L2(Rn) is the inner product in L2(Rn), Mξ and T−b are the modu-
lation operator and the translation operator given by

(Mξϕ)(x) = eix·ξϕ(x)

and
(T−bϕ)(x) = ϕ(x− b)

for all measurable functions ϕ on Rn and all x in Rn. At this point, we
can recall the resolution of the identity formula for the short-time Fourier
transform.

Theorem 1.2 Let ϕ be a window in L2(Rn) such that

‖ϕ‖L2(Rn) = 1,

where ‖ ‖L2(Rn) is the norm in L2(Rn). Then for all f and g in L2(Rn),

(f, g)L2(Rn) =

∫
Rn

∫
Rn

(Gϕf)(b, ξ)(Gϕg)(b, ξ) db dξ. (1.4)

Theorem 1.2 is the special case of Theorem 3.1 in [1] in which the matrix
A is the identity matrix and can be seen as another continuous inversion
formula for the short-time Fourier transform. Indeed, by (1.4), we can write

f = (2π)−n/2
∫
Rn

∫
Rn

(f,MξT−bϕ)L2(Rn)MξT−bϕdb dξ.

The major drawback of the short-time Fourier transform is the fixed width
of the analyzing window. Indeed, in many applications, the high frequency
content of a signal is more time/space-localized than the low-frequency one.
So, it is important to introduce a transform such that its analyzing window
can be adapted to the frequency to be analyzed. The Stockwell transform,
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sometimes referred to as the S-transform in the literature, Sf of a signal
f ∈ L2(R) is introduced in [3] by Stockwell, Mansinha and Lowe as

(Sf)(b, ξ) = (2π)−1/2

∫
R

e−ixξf(x)|ξ|e−(ξ(x−b))2/2dx, b, ξ ∈ R. (1.5)

Since then, the Stockwell transform has been used in various applications
such as geophysics, medical imaging, electrical engineering and many others.

Many extensions of the Stockwell transform have been proposed in re-
cent years. See, for example, [4] [5] and [6]. A natural extension should be
one that acts like the short-time Fourier transform generalizing the Gabor
transform. Our preference is the one-dimensional modified Stockwell trans-
forms studied in [7, 8, 9]. To wit, let f be a signal in L2(R) and let ϕ be a
window in L2(R). Then for 1 ≤ s < ∞, the modified Stockwell transform
Ss,ϕf of the signal f with respect to the window ϕ is given by

(Ss,ϕ)f)(b, ξ) =

∫
R

e−ixξf(x)|ξ|1/sϕ(ξ(x− b)) dx, b, ξ ∈ R. (1.6)

The original Stockwell transform in (1.5) is the special case when s = 1
and ϕ is the Gaussian function g. In [2], an inversion formula similar to
Theorem 1.1 is stated. Precisely, it is the following theorem.

Theorem 1.3 Let f be a signal in L2(R) and let ϕ be a window in L1(R)∩
L2(R) such that ∫

R

ϕ(x) dx = 1.

Then

f̂(ξ) =

∫
R

(Sϕf)(b, ξ) db, ξ ∈ R.

Theorem 1.3 is still valid for the modified Stockwell transform given in
(1.6). More precisely, the conclusion should now be replaced by∫

R

(Ss,ϕf)(b, ξ) db = |ξ|(1/s)−1f̂(ξ), ξ ∈ R \ {0}.

See Theorem 8 in [9].
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It is obvious that

(Ss,ϕf)(b, ξ) = (2π)−1/2(f,MξT−bDs,ξ−1ϕ)L2(R),

where Ds,ξ−1 is the one-dimensional dilation operator given by

(Ds,ξ−1ϕ)(x) = |ξ|1/sϕ(ξx) (1.7)

for all measurable functions ϕ on R and all x in R. We can think of the
Stockwell transform as a short-time Fourier transform in which the width
of the analyzing window varies in accordance with the frequency to be an-
alyzed. The following resolution of the identity formula can be found in
[9, 10].

Theorem 1.4 Let ϕ be a window in L2(R) such that

cϕ =

∫
R

|ϕ̂(ξ)|2 dξ

|ξ + 1|
<∞.

Then for all f and g in L2(R),

cϕ(f, g)L2(R) =

∫
R

∫
R

(Ss,ϕf)(b, ξ)(Ss,ϕg)(b, ξ)db
dξ

|ξ|(2/s)−1
.

Theorem 1.4 points out the similarity of the modified Stockwell trans-
form with the wavelet transform that we now recall. The wavelet transform
Ωϕf of a signal f in L2(R) with respect to the window ϕ in L2(R) is given
by

(Ωϕf)(b, a) =

∫
R

f(x)|a|−1/2ϕ(a−1(x− b)) dx, b ∈ R, a ∈ R \ {0}.

The modified Stockwell transform and the wavelet transform are related by
the formula to the effect that

(Ss,ϕf)(b, ξ) = (2π)−1/2e−ibξ|ξ|(1/s)−(1/2)(Ωψf)(b, 1/ξ), b ∈ R, ξ ∈ R \ {0},

where
ψ(x) = eixϕ(x), x ∈ R.

The analog of Theorem 1.4 for the wavelet transform is the following
theorem, which is a well-known result, e.g., Proposition 2.4.1 in [11].
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Theorem 1.5 Let ϕ be a window in L2(R) such that

cϕ =

∫
R

|ϕ̂(ξ)|2 dξ
|ξ|2

<∞.

Then for all f and g in L2(R),

(f, g)L2(R) =
1

cϕ

∫
R

∫
R

(Ωϕf)(b, a)(Ωϕg)(b, a)db
da

a2
.

The aim of this paper is to obtain multi-dimensional analogs of the
modified Stockwell transform in (1.6) and give continuous inversion formulas
for them.

In Section 2, we introduce multi-dimensional modified Stockwell trans-
forms, which modify the one given in [1]. In Section 3, a result on the
continuous inversion formula in [1] is revisited and shown to be only valid
for dimensions equal to 1, 2, 4 and 8 in view of a topological result in
[13]. A new continuous inversion formula for this multi-dimensional Stock-
well transform is stated and proved in Section 4. This formula includes
Theorem 1.2, Theorem 1.4 as special cases.

It is also worth pointing out the relations of the results in this paper with
those in [1]. Theorem 3.1 in this paper is Theorem 2.3 in [1] and examples
of 2×2, 4×4 and 8×8 matrices satisfying the hypotheses of the theorem are
given in [1]. We explain in this paper why the hypotheses cannot be satisfied
for dimensions other than 1, 2, 4 and 8. The new result in this paper is
Theorem 4.3, which has no obvious connection with Theorem 3.1 in this
paper. The multi-dimensional Gabor transforms in Section 3 of [1] and the
multi-dimensional non-isotropic Stockwell transforms in [1] are examples to
which Theorem 4.3 can be applied.

One-dimensional modified Stockwell transforms in the context of time-
frequency analysis have been studied in [7, 8, 9]. In an era in which math-
ematical sciences develop unprecedentally fast, it is envisaged that multi-
dimensional modified Stockwell transforms are additional useful tools to
understand and analyze the architecture of large data sets gathered from
investigations in many areas.
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2 Multi-Dimensional Modified

Stockwell Transforms

The starting point is to extend the one-dimensional dilation operator given
by (1.7). Let A ∈ GL(n,R). Then for 1 ≤ s < ∞, the multi-dimensional
dilation operator Ds,A is defined by

(Ds,Aϕ)(x) = |detA|−1/sϕ(A−1x), x ∈ Rn,

for all measurable functions ϕ on Rn. If s = 2, then D2,A is a unitary
operator on L2(Rn).

Let A : Rn → GL(n,R) be given by

R
n 3 ξ 7→ Aξ ∈ GL(n,R)

and let ϕ ∈ L2(Rn). Then for 1 ≤ s < ∞, we define the multi-dimensional
modified Stockwell transform Ss,A,ϕf of a signal f in L2(Rn) by

(Ss,A,ϕf)(b, ξ) = (2π)−n/2|detAξ|−1/s

∫
Rn

f(x)e−ix·ξϕ(A−1
ξ (x− b)) dx (2.1)

for all (b, ξ) ∈ Rn × Rn. We note that for all b and ξ in Rn,

(Ss,A,ϕf)(b, ξ)

= |detAξ|(1/2)−(1/s)(S2,A,ϕf)(b, ξ)

= (2π)−n/2|detAξ|(1/2)−(1/s)(f,MξT−bD2,Aξϕ)L2(Rn). (2.2)

The modified Stockwell transform Ss,A,ϕf of a signal f ∈ L2(Rn) can be

expressed in terms of the Fourier transform f̂ of the signal f .

Proposition 2.1 Let f, ϕ ∈ L2(Rn). Then for 1 ≤ s <∞,

(Ss,A,ϕf)(b, ξ) = |detAξ|1−(1/s)e−ib·ξ(F−1
ζ 7→bfξ,Aξ)(b), b, ξ ∈ Rn,

where
fξ,Aξ(ζ) = f̂(ζ)ϕ̂(Atξ(ζ − ξ)), ζ ∈ Rn.
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Proof For all b and ξ ∈ Rn,

FT−bMξD2,Aξϕ = M−bT−ξD2,(A−1
ξ )tFϕ.

So, by Plancherel’s formula,

(f, T−bMξD2,Aξϕ)L2(Rn)

= (Ff,FT−bMξD2,Aξϕ)L2(Rn)

= (Ff,M−bT−ξD2,(A−1
ξ )tFϕ)L2(Rn)

= |detAξ|1/2
∫
Rn

f̂(ζ)eib·ζϕ̂(Atξ(ζ − ξ)) dζ

= (2π)n/2|detAξ|1/2(2π)−n/2
∫
Rn

f̂(ζ)eib·ζϕ̂(Atξ(ζ − ξ)) dζ

= (2π)n/2|detAξ|1/2(F−1
ζ 7→bfξ,Aξ)(b), b ∈ Rn.

Since

(S2,A,ϕf)(b, ξ) = (2π)−n/2e−ib·ξ(f, T−bMξD2,Aξϕ)L2(Rn), b, ξ ∈ Rn,

it follows from (2.2) that

(Ss,A,ϕf)(b, ξ)

= |detAξ|(1/2)−(1/s)(S2,A,ϕf)(b, ξ)

= |detAξ|(1/2)−(1/s)(2π)−n/2e−ib·ξ(f, T−bMξD2,Aξϕ)L2(Rn)

= |detAξ|(1/2)−(1/s)(2π)−n/2e−ib·ξ(2π)n/2|detAξ|1/2(F−1
ζ 7→bfξ,Aξ)(b)

= |detAξ|1−(1/s)e−ib·ξ(F−1
ζ 7→bfξ,Aξ)(b), b, ξ ∈ Rn.

2

Remark 2.2 Proposition 2.1 tells us that we can obtain the modified Stock-
well transform of a signal by taking the Fourier transform of the signal, cut-
ting it by means of the conjugate of a dilated Fourier transform of a window
and then taking the inverse Fourier transform. This suggests the possibility
of developing a fast algorithm to compute the modified Stockwell transform
as the one developed in [12].
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3 The Case for s=1

A recall of Theorem 2.3 in [1] is in order. The multi-dimensional Stockwell
transform therein is the modified Stockwell transform with s = 1. We call
it Theorem 3.1 in this paper.

Theorem 3.1 Suppose that the mapping A : Rn → GL(n,R) given by

R
n 3 ξ 7→ Aξ ∈ GL(n,R)

satisfies the following two conditions.
(a) If η = Atξζ for some ζ ∈ Rn, then there exist two positive functions f1

and f2 on Rn such that∣∣∣∣det

(
∂η

∂ξ

)∣∣∣∣ =
f1(η)

f2(ξ)
, ξ, η ∈ Rn,

where ∂η
∂ξ

is the Jacobian matrix of η with respect to ξ.

(b) There exists a vector v ∈ Rn such that

Atξξ = v.

Let ϕ ∈ L1(Rn) ∩ L2(Rn) be such that

cϕ =

∫
Rn

|ϕ̂(η)|2 dη

f1(η + v)
<∞.

Then

cϕ(f, g)L2(Rn) =

∫
Rn

∫
Rn

(S1,A,ϕf)(b, ξ)(S1,A,ϕg)(b, ξ) db
dξ

f2(ξ)

for all f and g in L2(Rn).

Remark 3.2 The following matrix functions A : Rn → GL(n,R) for n =
2, 4, 8 satisfy Theorem 3.1 if each is divided by |ξ|2.

Aξ =

 ξ1 −ξ2

ξ2 ξ1
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Aξ =


ξ1 −ξ2 −ξ3 −ξ4

ξ2 ξ1 −ξ4 ξ3

ξ3 ξ4 ξ1 −ξ2

ξ4 −ξ3 ξ2 ξ1



Aξ =



ξ1 −ξ2 −ξ3 −ξ4 −ξ5 −ξ6 −ξ7 −ξ8

ξ2 ξ1 −ξ4 ξ3 −ξ6 ξ5 ξ8 −ξ7

ξ3 ξ4 ξ1 −ξ2 −ξ7 −ξ8 ξ5 ξ6

ξ4 −ξ3 ξ2 ξ1 −ξ8 ξ7 −ξ6 ξ5

ξ5 ξ6 ξ7 ξ8 ξ1 −ξ2 −ξ3 −ξ4

ξ6 −ξ5 ξ8 −ξ7 ξ2 ξ1 ξ4 −ξ3

ξ7 −ξ8 −ξ5 ξ6 ξ3 −ξ4 ξ1 ξ2

ξ8 ξ7 −ξ6 −ξ5 ξ4 ξ3 −ξ2 ξ1


That it is not possible to extend Theorem 3.1 to dimensions other than 1,
2, 4 and 8 is due to the following proposition.

Proposition 3.3 Let n ∈ N \ {1, 2, 4, 8}. Then there does not exist a con-
tinuous mapping

S
n−1 3 ξ 7→ Aξ ∈ GL(n,R)

such that Aξξ is parallel to to the vector e1 ∈ Rn, where e1 has 1 in the first
entry and zeros elsewhere.

The proof of Proposition 3.3 can be found in [14] and it is based on the
paper [13] by Bott and Milnor. In view of Proposition 3.3, part (b) of the
hypotheses of Theorem 3.1 cannot be satisfied for n ∈ N \ {1, 2, 4, 8}.

4 Continuous Inversion Formulas

New continuous inversion formulas for multi-dimensional modified Stockwell
transforms can now be given. We begin with a formula on the Fourier
transform.
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Proposition 4.1 Let f be a signal in L2(Rn) and let ϕ ∈ L1(Rn)∩L2(Rn)
be such that ∫

Rn

ϕ(x) dx = 1.

Then

f̂(ξ) = |detAξ|(1/s)−1

∫
Rn

(Ss,A,ϕf)(b, ξ) db, ξ ∈ Rn.

Proof Using the Fubini theorem and the change of variable from x to y
via

y = A−1
ξ (x− b),

we get ∫
Rn

(Ss,A,ϕf)(b, ξ) db

=

∫
Rn

(
(2π)−n/2|detAξ|−1/s

∫
Rn

f(x)e−ix·ξϕ(A−1
ξ (x− b))dx

)
db

= (2π)−n/2
∫
Rn

∫
Rn

f(x)e−ix·ξϕ(A−1
ξ (x− b))|detAξ|−1/sdx db

= (2π)−n/2
∫
Rn

e−ix·ξf(x)|detAξ|−1/s

(∫
Rn

ϕ(A−1
ξ (x− b))db

)
dx

= (2π)−n/2
∫
Rn

e−ix·ξf(x)|detAξ|1−(1/s)

(∫
Rn

ϕ(y) dy

)
dx

= |detAξ|1−(1/s)f̂(ξ), ξ ∈ Rn.

2

In order to have new resolution of the identity formulas for a wider class
of modified Stockwell transforms, we first give the following lemma from
[15].

Lemma 4.2 Let A : Rn → GL(n,R) be a piecewise differentiable function
such that we can find a fixed (1,2)-tensor F and a fixed (1,1)-tensor G for
which

(Atξ)
−1 = (F i

jlξ
l +Gi

j)1≤i,j≤n,
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i.e.,

(Atξ)
−1 =


∑n

l=1 F
1
1lξ

l · · ·
∑n

l=1 F
1
nlξ

l

...
...

...∑n
l=1 F

n
1lξ

l · · ·
∑n

l=1 F
n
nlξ

l

+


G1

1 · · · G1
n

...
...

...

Gn
1 · · · Gn

n

 .

Then ∫
Rn

|ϕ̂(Atξ(ζ − ξ))|2|detAξ| dξ =

∫
ηζ(Rn)

|ϕ̂(η)|2 dη

|det (F i
jkη

j + δik)|
,

where ηζ : Rn → R
n is given by

ηζ(ξ) = Atξ(ζ − ξ), ξ ∈ Rn.

A poof of Lemma 4.2 can be found in [15]. For the sake of being self-
contained, we give a more expanded proof than that in [15] filling in the
details.

Proof of Lemma 4.2 We begin with the (1, 1)-tensor

Qj
i = (Atξ)

j
i

and its inverse
Sij = ((Atξ)

−1)ij.

Then for ξ ∈ Rn, we define the function η : Rn × Rn by

R
n 3 ζ 7→ ηζ(ξ),

where
(ηζ(ξ))

j = Qj
i (ζ − ξ)i.

If we denote the Jacobian ∂η
∂ξ

by Jη(ξ), then

(Jη(ξ))
j
k = ∂kQ

j
i (ζ − ξ)i +Qj

i∂k(ζ − ξ)i

= ∂kQ
j
i (ζ − ξ)i −Q

j
iδ
i
k

= Qj
i (S

i
j∂kQ

j
i (ζ − ξ)i − δik)

= Qj
i (−(∂kS

i
j)Q

j
i (ζ − ξ)i − δik)

= Qj
i (−(∂kS

i
j)η

j − δik).

12



Thus,
Sij = ((A−1

ξ )t)ij = F i
jlξ

l +Gi
j.

So,
∂kS

i
j = F i

jlδ
l
k = F i

jk

and
(Jη(ξ))

j
k = Qj

i (−F i
jkη

j − δik).

Observing that
detQj

i = detAtξ = detAξ

and
det (Jη(ξ))

j
k = (−1)n(detAξ)det (F i

jkη
j + δik),

we get
dη = |det (Jη(ξ))

j
k| dξ = |detAξ| |det (F i

jkη
j + δik)| dξ.

Hence∫
Rn

|ϕ̂(Atξ(ζ − ξ))|2|detAξ| dξ =

∫
ηζ(Rn)

|ϕ̂(η)|2 dη

|det (F i
jkη

j + δik)|
.

This completes the proof of Lemma 4.2. 2

We can now give a new resolution of the identity formula for modified
Stockwell transforms.

Theorem 4.3 Let the hypotheses of Lemma 4.2 be satisfied. Moreover,
suppose that

ηζ(R
n) = Rn

for all ζ ∈ Rn. Let ϕ ∈ L2(Rn) be such that

cϕ =

∫
Rn

|ϕ̂(ξ)|2 dξ

|det (F i
jkξ

j + δik)|
<∞.

Then

cϕ(f, g)L2(Rn) =

∫
Rn

∫
Rn

(Ss,A,ϕf)(b, ξ)(Ss,A,ϕg)(b, ξ) db |detAξ|(2/s)−1dξ

for all f and g in L2(Rn).
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Proof Using Proposition 2.1, the Fubini theorem, Plancherel’s formula
and Lemma 4.2, we get∫

Rn

∫
Rn

(Ss,A,ϕf)(b, ξ)(Ss,A,ϕg)(b, ξ) db |detAξ|(2/s)−1dξ

=

∫
Rn

∫
Rn

|detAξ|1−(1/s)e−ib·ξ(F−1
ζ 7→bfξ,Aξ)(b)

×|detAξ|1−(1/s)e−ib·ξ(F−1
ζ 7→bgξ,Aξ)(b) db |detAξ|(2/s)−1 dξ

=

∫
Rn

∫
Rn

(F−1
ζ 7→bfξ,Aξ)(b)(F

−1
ζ 7→bgξ,Aξ)(b) db |detAξ| dξ

=

∫
Rn

(∫
Rn

fξ,Aξ(ζ)gξ,Aξ(ζ) dζ

)
|detAξ| dξ

=

∫
Rn

(∫
Rn

f̂(ζ)ϕ̂(Atξ(ζ − ξ))ĝ(ζ)ϕ̂(Atξ(ζ − ξ)) dζ
)
|detAξ| dξ

=

∫
Rn

∫
Rn

f̂(ζ)ĝ(ζ)

(∫
Rn

|ϕ̂(Atξ(ζ − ξ))|2|detAξ| dξ
)
dζ

=

∫
Rn

∫
Rn

f̂(ζ)ĝ(ζ)

(∫
ηζ(Rn)

|ϕ̂(η)|2 dη

|det (F i
jkη

j + δik)|

)
dζ

= cϕ

∫
Rn

f̂(ζ)ĝ(ζ) dζ

= cϕ(f, g)L2(Rn).

2

Remark 4.4 Theorem 4.3 in this paper contains Theorem 3.1 in [1] (con-
stant matrices) and Corollary 4.1 in [1] (diagonal matrices) as special cases.
Theorem 4.3 is certainly applicable to the constant and diagonal matrices
for all dimensions n. It does not, however, include Theorem 3.1 in this
paper as a special case. The matrix-valued functions given by the 2 × 2,
4× 4 and 8× 8 matrices in Remark 3.2 satisfy the hypotheses of Theorem
4.3. It should be pointed out that Lemma 4.2 and Theorem 4.3 are in [16].

Acknowledgment The authors are grateful to the referee for the useful
comments in improving the presentation of the paper.
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