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Abstract

Pseudo-differential operators with twisted symbolic estimates play a large role
in the calculus on manifolds with edge singularities. We study here aspects
of the underlying abstract concept and establish a new result on iteration of
quantizations.
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Introduction

The cone, edge and corner pseudo-differential theories of [6], [20], [25], [27], orga-
nized as algebras of operators with symbolic structures, suggest an iterative ap-
proach. This paper is devoted to new elements of this program. In Sections 1
and 2 we give the abstract edge spaces, twisted symbolic estimates and associated
operators. Edge spaces modelled on Hilbert and more general spaces with group
action have been introduced in [24]. The edge pseudo-differential calculus in such
spaces based on operators with operator-valued symbols arises in the analysis of
boundary value problems. See, in particular, [1] for operators with transmission
property on the boundaty, and [21] for the case without the transmission property.
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The corresponding boundary symbolic calculus in L2 spaces on the half-axis and
relations to Mellin operators have been studied in Eskin’s book [7]. This is one
of the sources of the pseudo-differential calculus on manifolds with conical singu-
larities in the sense of [20]. Other results can be traced back to Kondratyev [14],
Rabinovich [19], Kondratyev and Oleynik [15]. Operator-valued symbolic structures
have also been used in Vishik and Grushin [33] in the context of boundary value
problems for certain degenerate operators. The paper [18] of Luke contains an index
theorem for elliptic operators of order zero based on operator-valued symbols on L2

spaces. The lack of the higher order case is due to the lack of spaces with group
actions, which are given later in [24]. The development of the singular analysis up
to iterative concepts for higher singularities has been outlined in Chapter 10 of [11].
See also [2, 10, 22, 23, 27, 31, 28]. Many specific contributions and applications
are given in [3, 4, 5, 8, 9, 29, 32]. Let us finally mention the useful paper [12]
where interpolation properties of edge Sobolev spaces have been studied by a more
abstract integral transform than the Fourier transform. In Section 3 we establish
a new theorem for iterated pseudo-differential operators on edge spaces. This is
a result in the larger program of completing the calculus of k-fold iterated corner
pseudo-differential operators for k ≥ 2.

1 Abstract edge spaces

Abstract edge spaces, to be defined in Definition 1.1, play a large role in the following
investigations. Spaces of that kind have been introduced and widely investigated
in a first version of the edge algebra in [24]. In a more “concrete” form they have
already appeared in [21]. In a paper of Hirschmann [12] these spaces are investigated
in connection with interpolations and other useful functional analytic properties.
Vector-valued spaces without group action in the reference spaces H are employed
in Luke [18] in connection with the index theory of elliptic operators with operator-
valued symbols. In the paper [33] of Vishik and Grushin, degenerate operators
in terms of operator-valued symbols are studied. Certain versions of edge spaces
have been applied by Dreher and Witt [5] to hyperbolic problems. In Flad and
Harutyunyan [8] the edge algebra machinery, including edge spaces, has been applied
to models of particle physics.
Let us first recall some notation and definitions on pseudo-differential operators with
operator-valued symbols. The starting point is a Hilbert space H with a group of
isomorphisms κ = {κδ}δ∈R+ ,

κδ : H → H,

such that δ → κδh defines an element of C(R+, H) for every h ∈ H. In that case we
say that H is endowed with a group action. There are then constants c, g > 0 such
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that
‖κδ‖L(H) ≤ c(max{δ, δ−1})g. (1.1)

More generally, if E is a Fréchet space, written as a projective limit E = lim←−j∈NE
j

of Hilbert spaces Ej, continuously embedded in E0 for all j, a group action on E is
defined by a group action on E0 such that the restriction κδ|Ej is a group action on
Ej for every j.

Definition 1.1. (i) Let H be a Hilbert space with group action κ. Then for s ∈ R,
Ws(Rq, H) is defined to be the completion of S(Rq, H) with respect to the norm
‖ ‖Ws(Rq ,H) given by

‖u‖Ws(Rq ,H) =

{∫
Rq

〈η〉2s ‖κ−1
〈η〉û(η)‖2

Hd
−η

}1/2

, (1.2)

where û(η) = (Fy→ηu)(η) is the Fourier transform, d−η := (2π)−qdη.
(ii) For a Fréchet space E with group action in the above-mentioned sense, we define
Ws(Rq, E) by

Ws(Rq, E) = lim←−
j∈N
Ws(Rq, Ej).

If necessary, in order to indicate the dependence of the spaces on κ we also write

Ws(Rq, H)κ and Ws(Rq, E)κ,

respectively. Clearly the case id consisting of κδ = id for all δ ∈ R+ is admitted.
Then we have

Ws(Rq, H)id = Hs(Rq, H).

The spaces in Definition 1.1 are also referred to as abstract edge Sobolev spaces.
Recall that the operator K given by

Ku = F−1κ〈η〉Fu

induces an isomorphism

K :Ws(Rq, H)id →Ws(Rq, H)κ

for every s ∈ R.
For any positive function w(η) ∈ C(Rq) such that there exist positive constants c1

and c2 for which
c1w(η) ≤ 〈η〉 ≤ c2w(η)

for all η ∈ Rq, the integral{∫
Rq

w(η)2s‖κ−1
〈η〉û(η)‖2

Hd
−η

}1/2
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gives an equivalent norm to (1.2). The case when

w(η) = 〈ση〉 ,

where σ ∈ R+ is fixed, is of particular interest to us. Moreover, there are different
choices of group actions κ = {κδ}δ∈R+ and ϑ = {ϑδ}δ∈R+ on H such that (1.2) is
equivalent to {∫

Rq

〈η〉2s ‖ϑ−1
〈η〉û(η)‖2

Hd
−η

}1/2

.

This is the case, for instance, for ϑδu = κσδu for any fixed σ ∈ R+. More generally,
κ is equivalent to ϑ if supδ∈R+

‖κδϑ−1
δ ‖L(H) <∞. Moreover,{∫

Rq

〈ση〉2s ‖κ−1
〈ση〉û(η)‖2

Hd
−η

}1/2

(1.3)

is equivalent to (1.2) for any fixed σ ∈ R+. For a fixed u ∈ Ws(Rq, H) we can
rewrite (1.3) as {∫

Rq

〈η〉2s ‖κ−1
〈η〉ûσ(η)‖2

Hd
−η

}1/2

for a continuous family R+ →Ws(Rq, H), σ → uσ. In fact, we may set

ûσ(η) =
〈ση〉s

〈η〉s
κ−1
〈ση〉/〈η〉û(η) (1.4)

for all η ∈ Rq.
Theorem 1.2. Let H be a Hilbert space with group action κ. Then Ws(Rq, H)κ is
a Hilbert space with group action χ = {χδ}δ∈R+ defined by

(χδu)(y) = δq/2(κδu)(δy), δ ∈ R+, (1.5)

where κδ acts pointwise on the values of u in the space H, and for every p ∈ N we
have

Ws(Rp,Ws(Rq, H)κ)χ =Ws(Rp+q, H)κ, (1.6)

for all s ∈ R. A similar result holds for a Fréchet space E with group action κ.

Proof. Let us verify that (1.5) defines a group action on Ws(Rq, H)κ. We employ
Definition 1.1, assume that u ∈ Ws(Rq, H)κ, and compute the Ws(Rq, H)κ-norm of
χδu, δ ∈ R+. Indeed,

‖χδu‖2
Ws(Rq ,H) =

∫
Rq

〈η〉2s ‖κ−1
〈η〉(χδu)∧(η)‖2

Hd
−η =

∫
Rq

〈η〉2s ‖κ−1
〈η〉δ

−q/2û(δ−1η)‖2
Hd
−η

=

∫
Rq

〈δη̃〉2s ‖κ−1
〈δη̃〉δ

−q/2û(η̃)‖2
Hδ

qd−η̃ =

∫
Rq

〈δη〉2s ‖κ−1
〈δη〉û(η)‖2

Hd
−η

=

∫
Rq

(
〈δη〉
〈η〉

)2s 〈η〉2s ‖κ−1
〈δη〉û(η)‖2

Hd
−η, (1.7)



Iterative Properties of Pseudo-Differential Operators on Edge Spaces 5

using the relation

Fy→η(ϑ
−1
δ h)(η) = ϑδ(Fy→ηh)(η), δ ∈ R+, (1.8)

on a function h(y), y ∈ Rq, where (ϑ−1
δ h)(y) = δq/2h(δ−1y). The right hand side of

(1.7) can be written as ∫
Rq

〈η〉2s ‖κ−1
〈η〉ûδ(η)‖2

Hd
−η

for ûδ(η) = (〈δη〉 / 〈η〉)sκ−1
〈δη〉/〈η〉û(η) in view of the formula (1.4). As noted before the

correspondence δ 7→ F−1
η→yûδ(η) for fixed u ∈ Ws(Rq, H)κ represents a continuous

function on δ ∈ R+ with values in Ws(Rq, H)κ.
For convenience, norms will be identified when they are equivalent. First we write

‖f‖2
Ws(Rp+q ,H) =

∫
Rq

∫
Rp

(〈ξ〉2 + |η|2)s‖κ−1

(〈ξ〉2+|η|2)1/2 f̂(ξ, η)‖2
Hdξdη,

where the “hat” indicates the Fourier transform F(x,y)→(ξ,η). Moreover, employing
the expression (1.2) where “hat” has the meaning of Fy→η, we obtain

‖f‖2
Ws(Rp+q ,H) =

∫
Rp

∫
Rq

〈ξ〉2s
(

1 +
|η|2

〈ξ〉2

)s
‖κ−1

(〈ξ〉2+|η|2)1/2 f̂(ξ, η)‖2
Hdηdξ

=

∫
Rp

〈ξ〉2s
{∫

Rq

〈η〉2s ‖κ−1

(〈ξ〉2+〈ξ〉2|η|2)1/2 f̂(ξ, 〈ξ〉 η)‖2
H 〈ξ〉

q dη

}
dξ (1.9)

and

‖f‖2
Ws(Rp,Ws(Rq ,H)) =

∫
Rp

〈ξ〉2s ‖χ−1
〈ξ〉(Fx→ξf)(ξ, y)‖2

Ws(Rq ,H)dξ

=

∫
Rp

〈ξ〉2s ‖κ−1
〈ξ〉 〈ξ〉

−q/2 (Fx→ξf)(ξ, 〈ξ〉−1 y)‖2
Ws(Rq ,H)dξ

=

∫
Rp

〈ξ〉2s
{∫

Rq

〈η〉2s ‖κ−1
〈ξ〉κ

−1
〈η〉 〈ξ〉

q/2 f̂(ξ, 〈ξ〉 η)‖2
Hdη

}
dξ. (1.10)

In the identification of the expressions in {· · · } occurring in (1.9) and (1.10) we have
employed the relation (1.8) and the fact that κ−1

〈ξ〉κ
−1
〈η〉 = κ−1

〈ξ〉〈η〉.

The equation (1.6) is an extension of Lemma 1 in Subsection 3.1.1 of [25], i.e., for
the case H = C and κδ = idC, δ ∈ R+, i.e.,

Ws(Rp, Hs(Rq)) = Hs(Rp+q)

when Hs(Rq) is endowed with the group action (κδu)(y) = δq/2u(δy), δ ∈ R+. The
equation (1.6) is formula (24) in Subsection 3.1.2 of [25]. Details are given in Propo-
sition 1.3.44 of [26], however, under the some extra assumptions as in [25]. The
assumptions are, in fact, redundant. We have presented the general proof here since
(1.6) belongs to the iterative concept of corner pseudo-differential operators.
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2 Symbols with twisted estimates

Given two Hilbert spaces H and H̃ with group actions κ and κ̃, respectively, a
function f ∈ C∞(Rqη \ {0},L(H, H̃)) is called twisted homogeneous in η ∈ Rq \ {0}
of order µ ∈ R if

f(δη) = δµκ̃δf(η)κ−1
δ

for all δ ∈ R+. Let
S(µ)(Rq \ {0};H, H̃) (2.1)

denote the space of those functions f . Then, if χ(η) is an excision function on Rq,
i.e., χ ∈ C∞(Rq), χ(η) = 0 for |η| < ε0, χ(η) = 1 for |η| > ε1 for some 0 < ε0 < ε1,
the function a(η) := χ(η)f(η) is an example of an operator-valued symbol in the
following sense. The space

Sµ(Ω× Rq;H, H̃),

Ω ⊆ Rp open, is defined to be the set of all a(y, η) ∈ C∞(Ω × Rq,L(H, H̃)) such
that

‖κ̃−1
〈η〉{D

α
yD

β
ηa(y, η)}κ〈η〉‖L(H,H̃) ≤ c 〈η〉µ−|β| (2.2)

for all (y, η) ∈ K×Rq, K b Ω, α ∈ Np, β ∈ Nq, for some constant c = c(α, β,K) > 0.

The subspace Sµcl(Ω × Rq;H, H̃) of classical symbols is defined as the set of all

a(y, η) ∈ Sµ(Ω × Rq;H, H̃) such that there are functions a(µ−j)(y, η) ∈ S(µ−j)(Ω ×
(Rq \ {0});H, H̃), j ∈ N, with

rN+1(y, η) := a(y, η)−
N∑
j=0

χ(η)a(µ−j)(y, η) ∈ Sµ−(N+1)(Ω× Rq;H, H̃) (2.3)

for every N ∈ N.

Example 2.1. Let a(y, η) ∈ C∞(Ω× Rq,L(H, H̃)) and

a(y, δη) = δµκ̃δa(y, η)κ−1
δ

for all δ ≥ 1, |η| ≥ c for some c > 0. Then a(y, η) ∈ Sµcl(Ω× Rq;H, H̃).

From the definition it follows that Sµ(Ω × Rq;H, H̃) is a Fréchet space where the

semi-norms are the best constants c in the estimates (2.2). Also Sµcl(Ω × Rq;H, H̃)

is Fréchet in the projective limit topology of the mappings Sµcl(Ω × Rq;H, H̃) →
S(µ−j)(Ω× (Rq \ {0});H, H̃), a(y, η)→ a(µ−j)(y, η), j ∈ N, and Sµcl(Ω×Rq;H, H̃)→
Sµ−(N+1)(Ω× Rq;H, H̃), a(y, η)→ rN+1(y, η), cf. (2.3).
If a consideration is valid in the classical or the general case we write subscript
“(cl)”.



Iterative Properties of Pseudo-Differential Operators on Edge Spaces 7

By
Sµ(cl)(R

q;H, H̃) (2.4)

we denote the subspaces of symbols with constant coefficients, i.e., which are inde-
pendent of y. The space (2.4) is closed in Sµcl(Ω× Rq;H, H̃). Then

Sµ(cl)(Ω× R
q;H, H̃) = C∞(Ω, Sµ(cl)(R

q;H, H̃)) = C∞(Ω)⊗̂πSµ(cl)(R
q;H, H̃), (2.5)

where ⊗̂π denotes the (completed) projective tensor product between the involved
spaces.
Clearly our spaces of symbols depend on the choice of κ, κ̃. If necessary, then we
write

Sµ(cl)(Ω× R
q;H, H̃)κ,κ̃ (2.6)

instead of Sµ(cl)(Ω× Rq;H, H̃).

Lemma 2.2. Let H and H̃ be Hilbert spaces with group actions κ and κ̃, respectively,
and let T : H → L and T̃ : H̃ → L̃ be isomorphisms to Hilbert spaces L and
L̃, respectively. Then the spaces L, L̃ are endowed with group actions λδ, λ̃δ given
by

λδ = TκδT
−1

and
λ̃δ = T̃ κ̃δT̃

−1,

and T, T̃ induce an isomorphism

Q : Sµ(cl)(Ω× R
q;H, H̃)κ,κ̃ → Sµ(cl)(Ω× R

q;L, L̃)λ,λ̃,

where
a(y, η) 7→ b(y, η)

and
b(y, η) = T̃ ◦ a(y, η) ◦ T−1, µ ∈ R.

Proof. First note that

b(y, η) = T̃ ◦ a(y, η) ◦ T−1 ∈ C∞(Ω× Rq,L(L, L̃)). (2.7)

Moreover, we have
Dα
yD

β
η b(y, η) = T̃Dα

yD
β
ηa(y, η)T−1

for arbitrary α ∈ Np, β ∈ Nq. Let us now check that b(y, η) ∈ Sµ(Ω × Rq;L, L̃)λ,λ̃.
To this end we have to verify the symbolic estimates to the effect that

‖λ̃−1
〈η〉{D

α
yD

β
η b(y, η)}λ〈η〉‖L(L,L̃) ≤ c 〈η〉µ−|β|



Iterative Properties of Pseudo-Differential Operators on Edge Spaces 8

for all (y, η) ∈ K × Rq, K b Ω, and α ∈ Np, β ∈ Nq, c = c(α, β,K) > 0. From (2.2)
and (2.7) we obtain

‖T̃−1λ̃−1
〈η〉T̃{D

α
yD

β
η T̃
−1b(y, η)T}T−1λ〈η〉T‖L(H,H̃)

= ‖T̃−1λ̃−1
〈η〉{D

α
yD

β
η b(y, η)}λ〈η〉T‖L(H,H̃)

= ‖κ̃−1
〈η〉{D

α
yD

β
ηa(y, η)}κ〈η〉‖L(H,H̃) ≤ c 〈η〉µ−|β| ,

using the fact that the operator

Q : C∞(Ω× Rq,L(L, L̃))→ C∞(Ω× Rq,L(H, H̃))

defined by
Q : b(y, η) 7→ T̃−1b(y, η)T

has the property that

Dα
yD

β
η (Qb)(y, η) = Q(Dα

yD
β
η b)(y, η),

or, equivalently,
T̃{Dα

yD
β
η T̃
−1b(y, η)T}T−1 = Dα

yD
β
η b(y, η).

The assertion for classical symbols is a consequence of the fact that T̃ ◦ a(µ−j) ◦ T−1

induces isomorphisms

S(µ−j)(Ω× (Rq \ {0});H, H̃)κ,κ̃ → S(µ−j)(Ω× (Rq \ {0});L, L̃)λ,λ̃

for every j; here subscripts κ, κ̃;λ, λ̃ have a similar meaning as in (2.6).

Let Ω be an open subset of Rq. Then for (y, y′) ∈ Ω× Ω, and a(y, y′, η) ∈ Sµ(cl)(Ω×
Ω× Rq;H, H̃), we define Opy(a)u(y) by

Opy(a)u(y) =

∫
Rq

∫
Rq

ei(y−y
′)ηa(y, y′, η)u(y′)dy′d−η,

first for u ∈ C∞0 (Ω, H), and define Lµ(cl)(Ω;H, H̃) by

Lµ(cl)(Ω;H, H̃) = {Opy(a) : a(y, y′, η) ∈ Sµ(cl)(Ω× Ω× Rq;H, H̃)},

and define L−∞(Ω;H, H̃) by

L−∞(Ω;H, H̃) =
⋂
µ∈R

Lµ(Ω;H, H̃).
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Recall from [25] or [26] that for H = H̃ = C and the trivial group action id both

on H and H̃, we recover the spaces Sµ(cl)(Ω×Ω×Rq) of scalar symbols and pseudo-

differential operators Lµ(cl)(Ω). In particular, L−∞(Ω) =
⋂
µ∈R L

µ(Ω) coincides with
the space of smoothing operators, i.e., operators of the form

C∞0 (Ω) 3 u 7→
∫

Ω

c(y, y′)u(y′)dy′

for some c(y, y′) ∈ C∞(Ω× Ω).
There are also variants with parameter λ ∈ Rl, namely,

Sµ(cl)(Ω× Ω× Rq+lη,λ ;H, H̃) and Lµ(cl)(Ω;H, H̃;Rlλ).

In this case we define L−∞(Ω;H.H̃;Rl) by

L−∞(Ω;H, H̃;Rl) = S(Rl, L−∞(Ω;H, H̃)). (2.8)

An A ∈ Lµ(Ω;H, H̃) induces a continuous operator

A : C∞0 (Ω, H)→ C∞(Ω, H). (2.9)

Proposition 2.3. [26, Proposition 1.3.24] Let a(η) ∈ Sµ(Rqη;H, H̃). Then Op(a)
extends to a continuous operator

Op(a) :Ws(Rq, H)→Ws−µ(Rq, H̃)

for every s ∈ R.

The proof in this case is straightforward. In fact, by virtue of Op(a) = F−1aF for
the Fourier transform F in y ∈ Rq we have

‖Op(a)u‖2
Ws−µ(Rq ,H̃)

=

∫
Rq

〈η〉2(s−µ) ‖κ̃−1
〈η〉a(η)û(η)‖2

H̃
d−η

≤
∫
Rq

〈η〉2(s−µ) ‖κ̃−1
〈η〉a(η)κ〈η〉‖2

L(H,H̃)
‖κ−1
〈η〉û(η)‖2

Hd
−η ≤ c2‖u‖2

Ws(Rq ,H)

where c = supη∈Rq 〈η〉
−µ ‖κ̃−1

〈η〉a(η)κ〈η〉‖L(H,H̃), which is finite because of (2.2). In

particular, it follows that a 7→ Op(a) induces a continuous operator

Sµ(Rq;H, H̃)→ L(Ws(Rq, H),Ws−µ(Rq, H̃)) (2.10)

for every s ∈ R.
More generally, for a(y, η) ∈ Sµ(Ω × Rq;H, H̃) we have for all s ∈ R, continuous
operators

Op(a) :Ws
comp(Ω, H)→Ws−µ

loc (Ω, H̃) (2.11)
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between comp/loc-versions of the abstract edge Sobolev spaces over an open set
Ω ⊆ Rq.
There are different ways of proving such a continuity. One relatively “unspecific”
way is the tensor product argument. This refers to the fact that when E and F are
Fréchet spaces, every element g in the completed projective tensor product E⊗̂πF
can be written as a convergent sum

∑∞
j=0 νjej⊗fj for suitable νj ∈ C,

∑∞
j=0 |νj| <∞,

and ej ∈ E, fj ∈ F, j ∈ N, tending to zero in the respective spaces, as j → ∞. In
order to show the continuity of (2.11), we employ the fact that the operatorMϕ of
multiplication by ϕ ∈ C∞0 (Ω) induces a continuous operator

Mϕ :Ws(Rq, H)→Ws(Rq, H),

where
‖Mϕ‖L(Ws(Rq ,H),Ws(Rq ,H)) → 0 asϕ→ 0 inC∞0 (Ω), (2.12)

see [26, Proposition 1.3.34]. Because of (2.5), we can represent a(y, η) as a convergent
sum

a(y, η) =
∞∑
j=0

νjMϕjaj(η)

for sequences ϕj ∈ C∞(Ω), aj ∈ Sµ(Rq;H, H̃) tending to zero in the respective
spaces as j → ∞, and νj ∈ C,

∑∞
j=0 |νj| < ∞. Then (2.11) follows from (2.10) and

(2.12), using the fact that

Op(a) =
∞∑
j=0

νjMϕjOp(aj)

converges in L([ψ]Ws(Rq, H),Ws−µ
loc (Ω, H̃)) for every ψ ∈ C∞0 (Ω).

Here if E is a Fréchet space that is a module over an algebra, then for any ψ in that
algebra we define

[ψ]E = completion of {ψe : e ∈ E} in E. (2.13)

Similar arguments of proving the continuity of Op(a) between edge spaces can be
found in [25, Subsection 3.2.1, Theorem 6], however, under an extra assumption
that turns out to be superfluous. Other methods are applied in [26, Theorem 1.3.59]
or in [32].

Remark 2.4. Let a0 ∈ L(H, H̃) and assume that

κ̃δa0κ
−1
δ ∈ C

∞(R+,L(H, H̃)). (2.14)

Then a(η) defined by
a(η) = 〈η〉µ κ̃〈η〉a0κ

−1
〈η〉

is in Sµcl(R
q;H, H̃).
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It also makes sense to consider g(η) given by

g(η) = [η]µκ̃[η]a0κ
−1
[η]

for any fixed strictly positive function [·] in C∞(Rqη) such that [η] = |η| for |η| ≥ c
for some c > 0. Clearly g(η) is C∞ in η if and only if a(η) is C∞ in η. For g, we
have

g(ση) = [ση]µκ̃[ση]a0κ
−1
[ση] = σµ[η]µκ̃σκ̃[η]a0κ

−1
[η] κ

−1
σ = σµκ̃σg(η)κ−1

σ

for σ ≥ 1 and |η| ≥ c. We also have g(η) ∈ Sµcl(R
q;H, H̃). See Example 2.1.

Remark 2.5. It can happen that the property (2.14) is violated. For instance, Let

H = H̃ = L2(Rn) and let a0 =Mf be the operator of multiplication by a function
f such that f ≡ 1 for |x| ≥ 1, f ≡ 1

2
for |x| < 1. Then for κδ defined by

κδu(x) = u(δx), δ ∈ R+,

we have
κδMfκ

−1
δ u =Mfδu

for fδ(x) = f(δx). However, because of the discontinuity of f we cannot differentiate
fδ with respect to δ.

Note that if we consider an operator c ∈ L(H, H̃) such that κδcκ
−1
δ does not belong

to C∞(R+,L(H, H̃)), we can generate smoothness by a mollifying process [17, 25].
Indeed, let c(δ) = κδcκ

−1
δ and let a(%) be defined by

a(%) =

∫ ∞
0

%−1ϕ

(
%− δ
%

)
c(δ)dδ

for a function ϕ ∈ C∞0 (R) such that suppϕ ⊂ [−ε, ε] for some 0 < ε < 1/2 and∫∞
−∞ ϕ(δ)dδ = 1. Then we have a(%) ∈ C∞(R+,L(H, H̃)). Moreover, for h ∈ H, we

have

κ̃σa(%)κ−1
σ h =

∫ ∞
0

%−1ϕ

(
%− δ
%

)
κ̃σc(δ)κ

−1
σ hdδ =

∫ ∞
0

%−1ϕ

(
%− δ
%

)
c(σδ)hdδ

=

∫ ∞
0

%−1ϕ

(
%− δ̃

σ

%

)
c(δ̃)hσ−1dδ̃ =

∫ ∞
0

σ−1%−1ϕ

(
σ%− δ̃
σ%

)
c(δ̃)hdδ̃

= a(σ%).

In other words, we obtain the homogeneity

a(σ%) = κσa(%)κ−1
σ , σ ∈ R+.
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We conclude that κ̃〈η〉a1κ
−1
〈η〉 ∈ C∞(Rq,L(H, H̃)) and a(η) given by

a(η) = 〈η〉µ κ̃〈η〉a1κ
−1
〈η〉

is in Sµcl(R
q;H, H̃).

Concrete cases in connection with Remark 2.4 are as follows. Let

b(x, x′, ξ) ∈ S(Rnx × Rnx′ , S
µ
(cl)(R

n
ξ ))

and let a0u = Op(b)u, where

Op(b)u =

∫
Rn

∫
Rn

ei(x−x
′)ξb(x, x′, ξ)u(x′)dx′d−ξ.

Then a0 : Hs(Rn)→ Hs−µ(Rn) is continuous for every s ∈ R. Let κδ be given by

(κδu)(x) = u(δx), δ ∈ R+,

and compute κδa0κ
−1
δ . By some obvious computations, we obtain

(κδOp(b)κ−1
δ u)(x) =

∫
Rn

∫
Rn

ei(δx−x
′)ξb(δx, x′, ξ)u(δ−1x′)dx′d−ξ

=

∫
Rn

∫
Rn

ei(x−x̃)ξ̃b(δx, δx̃, δ−1ξ̃)u(x̃)dx̃d−ξ̃.

Thus
κδOp(b)κ−1

δ = Op(bδ) (2.15)

for bδ(x, x
′, ξ) = b(δx, δx′, δ−1ξ). It follows in this case that

Dk
δ (κδOp(b)κ−1

δ ) = Op(Dk
δ bδ)

for every k ∈ N. Therefore

κδOp(b)κ−1
δ ∈ C

∞(R+,L(Hs(Rn), Hs−µ(Rn))).

Applying the construction to symbols b(x, y, ξ, η) ∈ S(Rnx, S
µ
(cl)(R

q
y × Rnξ × Rqη)), it

follows that
κ−1
〈η〉Opx(b)(y, η)κ〈η〉 = Opx(bdec)(y, η),

where
bdec(x, y, ξ, η) = b(〈η〉−1 x, y, 〈η〉 ξ, η). (2.16)

The symbol bdec(x, y, ξ, η) is often useful as a “decoupled” symbol. The decoupling
b→ bdec is known [29, Proposition 2.2.1] to generate a continuous operator

Sµ(cl)(R
n
x × Rqy × Rnξ × Rqη)→ Sµ(cl)(R

q
y × Rqη, S

µ
(cl)(R

n
x × Rnξ )),
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Let us also recall that in boundary value problems (when n = 1) or in the edge
pseudo-differential calculus (for arbitrary n), it is useful to interpret Opy(b0)(y, η)
for b0(y, ξ, η) = b(0, y, ξ, η) as an element of

Op(b0)(y, η) ∈ Sµcl(R
q
y × Rqη;Hs(Rn), Hs−µ(Rn)),

s ∈ R, where the symbol space on the right refers to κδ : u(x)→ δ
n
2 u(δx), both on

Hs(Rn) and Hs−µ(Rn).

3 Operators in iterated representation

Theorem 3.1. Let H and H̃ be Hilbert spaces with group actions κ and κ̃, respec-
tively. Then for a(ξ, η) ∈ Sµ(Rp+qξ,η ;H, H̃)κ,κ̃ and p(η) defined by

p(η) = Opx(a)(η),

we have
p(η) ∈ Sµ(Rq;Ws(Rp, H)κ,Ws−µ(Rp, H̃)κ̃)χ,χ̃

for every s ∈ R, where
(χδf)(x) = δp/2(κδf)(δx)

and
(χ̃δf̃)(x) = δp/2(κ̃δf̃)(δx), δ ∈ R+.

Proof. Indeed,
‖κ̃−1
〈ξ,η〉{D

α
ξ,ηa(ξ, η)}κ〈ξ,η〉‖L(H,H̃) ≤ c 〈ξ, η〉µ−|α| (3.1)

for every α ∈ Np+q, (ξ, η) ∈ Rp+q, for some c = c(α) > 0. We first note that

〈〈η〉 ξ, η〉2 = 1 + 〈η〉2 |ξ|2 + |η|2 = 〈η〉2 + 〈η〉2 |ξ|2 = 〈ξ〉2 〈η〉2 . (3.2)

In (3.1) we first assume α = 0 and obtain

‖κ̃−1
〈〈η〉ξ,η〉a(〈η〉 ξ, η)κ〈〈η〉ξ,η〉‖L(H,H̃) ≤ c 〈〈η〉 ξ, η〉µ = c 〈ξ〉µ 〈η〉µ . (3.3)

For p(η) = Opx(a)(η) and vη(x) = χ̃−1
〈η〉p(η)χ〈η〉u(x), we have

vη(x) = χ̃−1
〈η〉

∫
Rp

∫
Rp

ei(x−x
′)ξa(ξ, η)χ〈η〉u(x′)dx′d−ξ

= κ̃−1
〈η〉

∫
Rp

∫
Rp

ei(〈η〉
−1x−x′)ξa(ξ, η)κ〈η〉u(〈η〉x′)dx′d−ξ

= κ̃−1
〈η〉

∫
Rp

∫
Rp

ei(x−x
′)〈η〉−1ξa(ξ, η)κ〈η〉u(x′) 〈η〉−p dx′d−ξ

= κ̃−1
〈η〉

∫
Rp

∫
Rp

ei(x−x
′)ξa(〈η〉 ξ, η)κ〈η〉u(x′)dx′d−ξ

= κ̃−1
〈η〉F

−1
ξ→xa(〈η〉 ξ, η)κ〈η〉û(ξ).
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Thus
(χ̃−1
〈η〉p(η)χ〈η〉u)∧(ξ) = κ̃−1

〈η〉a(〈η〉 ξ, η)κ〈η〉û(ξ). (3.4)

In view of (3.2), the estimate (3.3) gives

‖κ̃−1
〈η〉κ̃

−1
〈ξ〉a(〈η〉 ξ, η)κ〈ξ〉κ〈η〉‖L(H,H̃) ≤ c 〈ξ〉µ 〈η〉µ . (3.5)

Let us now show that

‖χ̃−1
〈η〉p(η)χ〈η〉‖L(Ws(Rp,H),W s̃(Rp,H̃)) ≤ c 〈η〉µ . (3.6)

For u(x) ∈ Ws(Rpx, H) and s̃ = s− µ, we have

‖vη‖2
W s̃(Rp,H̃)

=

∫
Rp

〈ξ〉2s̃ ‖κ̃−1
〈ξ〉(χ̃

−1
〈η〉p(η)χ〈η〉u)∧(ξ)‖2

H̃
dξ

=

∫
Rp

〈ξ〉2s̃ ‖κ̃−1
〈ξ〉κ̃

−1
〈η〉a(〈η〉 ξ, η)κ〈η〉û(ξ)‖2

H̃
dξ. (3.7)

Here the relation (3.4) is used. The right hand side of (3.7) is equal to∫
Rp

〈ξ〉2(s−µ) ‖κ̃−1
〈ξ〉κ̃

−1
〈η〉a(〈η〉 ξ, η)κ〈η〉κ〈ξ〉κ

−1
〈ξ〉û(ξ)‖2

H̃
dξ

≤
∫
Rp

〈ξ〉−2µ ‖κ̃−1
〈ξ〉κ̃

−1
〈η〉a(〈η〉 ξ, η)κ〈η〉κ〈ξ〉‖2

L(H,H̃)
〈ξ〉2s ‖κ−1

〈ξ〉û(ξ)‖2
Hdξ

≤ c2 〈η〉2µ
∫
Rp

〈ξ〉2s ‖κ−1
〈ξ〉û(ξ)‖2

Hdξ,

where
c = sup

(ξ,η)∈Rp+q
〈ξ〉−µ 〈η〉−µ ‖κ̃−1

〈ξ〉κ̃
−1
〈η〉a(〈η〉 ξ, η)κ〈η〉κ〈ξ〉‖L(H,H̃)

comes from the estimate (3.5). Summing up, we have proved the symbolic estimate
(3.6) for every s ∈ R. Finally, using

Dβ
ηp(η) = Opx(D

β
ηa)(η)

and
Dβ
ηa(ξ, η) ∈ Sµ−|β|(Rp+qξ,η ;H, H̃)

from (3.6), we immediately obtain

‖χ̃−1
〈η〉D

β
ηp(η)χ〈η〉‖L(Ws(Rp,H),Ws−µ+|β|(Rp,H̃)) ≤ c 〈η〉µ−|β| (3.8)

for all β ∈ Nq. This then implies a similar estimate for Ws−µ(Rp, H̃) on the left
hand side of (3.8). So, the proof is complete.
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Proposition 3.2. If a(ξ, η) ∈ Sµcl(R
p+q
ξ,η ;H, H̃)κ,κ̃ and p(η) = Opx(a)(η), then

p(η) ∈ Sµcl(R
q
η;Ws(Rp, H)κ,Ws−µ(Rp, H̃)κ̃)χ,χ̃

for all s ∈ R.

Proof. We first look at a(µ)(ξ, η), the twisted homogeneous principal component of
a(ξ, η). Then for p(µ)(η) = Opx(a(µ))(η) with η 6= 0, we have

p(µ)(δη) = δµχ̃δp(µ)(η)χ−1
δ

for every δ ∈ R+. In fact,

p(µ)(δη)u(x) =

∫
Rp

∫
Rp

ei(x−x
′)ξa(µ)(ξ, δη)u(x′)dx′d−ξ

=

∫
Rp

∫
Rp

ei(x−x
′)ξa(µ)(δ

−1δξ, δη)u(x′)dx′d−ξ

=

∫
Rp

∫
Rp

ei(x−x
′)ξδµκ̃δa(µ)(δ

−1ξ, η)κ−1
δ u(x′)dx′d−ξ

= δµ
∫
Rp

∫
Rp

ei(x−x
′)δξ′′κ̃δa(µ)(ξ

′′, η)κ−1
δ u(x′)δpdx′d−ξ′′

= δµ
∫
Rp

∫
Rp

ei(δx−x
′′)ξ′′κ̃δa(µ)(ξ

′′, η)κ−1
δ u(δ−1x′′)dx′′d−ξ′′

= δµχ̃δ

∫
Rp

∫
Rp

ei(x−x
′)ξa(µ)(ξ, η)χ−1

δ u(x′)dx′d−ξ.

For every N ∈ N we can write

a(ξ, η) =
N∑
j=0

χ(ξ, η)a(µ−j)(ξ, η) + rN+1(ξ, η)

for any excision function χ(ξ, η) in Rp+q and some

rN+1(ξ, η) ∈ Sµ−(N+1)(Rp+qξ,η ;H, H̃),

(See the formula (2.3).) Then the above computation for µ− j rather than µ, using
that

χ(δξ, δη)a(µ−j)(δξ, δη) = δµ−jκ̃δχ(ξ, η)a(µ−j)(ξ, η)κ−1
δ

for δ ≥ 1 and |η| large enough, gives us for

pµ−j(η) = Opx(χa(µ−j))(η)
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the relation
pµ−j(δη) = δµ−jχ̃δpµ−j(η)χ−1

δ

for δ ≥ 1 and |η| large. (See also Example 2.1.) Thus for every N ∈ N we obtain

p(η) =
N∑
j=0

pµ−j(η) + pN+1(η)

for

pN+1(η) = Opx(rN+1)(η) ∈ Sµ−(N+1)(Rq;Ws(Rp, H)κ,Ws−µ(Rp, H̃)κ̃)χ,χ̃.

(See Theorem 3.1.) Thus p(η) is a classical symbol.

Proposition 3.3. The correspondence a(ξ, η) 7→ p(η) induces a continuous operator

Sµ(cl)(R
p+q
ξ,η ;H, H̃)κ,κ̃ → Sµ(cl)(R

q
η;Ws(Rp, H)κ,Ws−µ(Rp, H̃)κ̃)χ,χ̃,

for all s ∈ R.

Proof. The continuity for general symbols is an immediate consequence of the proof
of Theorem 3.1. The assertion in the classical case is straightforward for the terms
that are homogeneous for large absolute values of covariables. The arguments for
the remainder terms are as in the first part of the proof.

Remark 3.4. (i) More generally, let a(x, y, ξ, η) ∈ S(Rpx, S
µ(Rqy×R

p+q
ξ,η ;H, H̃)κ,κ̃) and

let p(y, η) = Opx(a)(y, η). Then we have

p(y, η) ∈ Sµ(Rqy × Rqη;Ws(Rp, H)κ,Ws−µ(Rp, H̃)κ̃)χ,χ̃

for every s ∈ R, and the map a 7→ p induces a continuous operator

S(Rpx, S
µ(Rqy × R

p+q
ξ,η ;H, H̃)κ,κ̃)→ Sµ(Rqy × Rqη;Ws(Rp, H)κ,Ws−µ(Rp, H̃)κ̃)χ,χ̃.

(ii) If a(y, ξ, η) ∈ Sµ(cl)(R
q
y ×R

p+q
ξ,η ;H, H̃)κ,κ̃ and p(y, η) = Opx(a)(y, η), then we have

p(y, η) ∈ Sµ(cl)(R
q × Rq;Ws(Rp, H)κ,Ws−µ(Rp, H̃)κ̃)χ,χ̃,

and a 7→ p defines a continuous operator between the respective symbol spaces.

Let H1 be a Hilbert space with group action κ1. Then H2 =Ws(Rq1 , H1) for q1 ∈ N,
admits the group action κ2 in accordance with

(κ2,δu2)(y1) = δq1/2(κ1,δu2)(δy1), y1 ∈ Rq1 , δ ∈ R+.
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(See Theorem 1.2.) If we let

Hk =Ws(Rqk−1 , Hk−1) (3.9)

for k ≥ 2, qk−1 ∈ N, then we have the group action κk on Hk given in (3.9) defined
by

(κk,δuk)(y
k−1) = δqk−1/2(κk−1,δuk)(δy

k−1), yk−1 ∈ Rqk−1 .

As a corollary of Theorem 3.1, we obtain the following iteration.

Corollary 3.5. Let a(ξ, η1, η2, . . . , ηk) ∈ Sµ(cl)(R
p
ξ × Rq1 × . . . × Rqk ;H0, H̃0)χ0,χ̃0,

where H0, H̃0 and χ0, χ̃0 are as in Theorem 3.1. For s ∈ R, let

H1 =Ws(Rpx, H0)χ0 , H̃1 =Ws−µ(Rpx, H̃0)χ̃0 ,

s ∈ R, with group actions

χ1,δf1(x) = δp/2(χ0,δf1)(δx), χ̃1,δf̃1(x) = δp/2(χ̃0,δf̃1)(δx), δ ∈ R+.

Then by Theorem 3.1, we have

a1(η1, η2, . . . , ηk) = Opx(a)(η1, η2, . . . , ηk) ∈ Sµ(cl)(R
q1 ×Rq2 × . . .×Rqk ;H1, H̃1)χ1,χ̃1 .

For 2 ≤ l ≤ k − 1 and

Hl =Ws(Rql−1 , Hl−1)χl−1
, H̃l =Ws−µ(Rql−1 , H̃l−1)χ̃l−1

endowed with group actions χl, χ̃l defined by

χl,δfl(y
l−1) = δql−1/2(χl−1,δfl)(δy

l−1), χ̃l,δf̃l(y
l−1) = δql−1/2(χ̃l−1,δf̃l)(δy

l−1),

we have

al(η
l, . . . , ηk) = Opyl−1(al−1)(ηl, . . . , ηk) ∈ Sµ(cl)(R

ql × . . .× Rqk ;Hl, H̃l)χl,χ̃l .

The correspondence a(ξ, η1, . . . , ηk) 7→ ak(η
k) induces a continuous operator

Sµ(cl)(R
p
ξ × R

q1 × . . .× Rqk ;H, H̃)κ,κ̃ → Sµ(cl)(R
qk ;Hk, H̃k)χk,χ̃k

for every k ∈ N, s ∈ R.
The following proposition is related with the shape of decoupled symbols (2.16).

Proposition 3.6. Let ϕ ∈ S(Rpx) andMϕ the operator of multiplication by ϕ. Then
for every s ∈ R, we have Mϕ ∈ S0(Rq;Ws(Rp, H)κ,Ws(Rp, H)κ)χ,χ, and ϕ→Mϕ

gives rise to a continuous injective operator

S(Rp)→ S0(Rq;Ws(Rp, H)κ,Ws(Rp, H)κ)χ,χ. (3.10)
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Proof. We have to verify the symbolic estimates

‖χ−1
〈η〉Mϕχ〈η〉‖L(Ws(Rp,H)) ≤ c (3.11)

for a c = cϕ > 0 and cϕ → 0 as ϕ→ 0 in S(Rpx). We have

χ−1
〈η〉Mϕχ〈η〉 =Mϕη

for ϕη(x) = ϕ(〈η〉−1x). We now employ the fact that for the scalar symbol 〈ξ〉s, the
operator Op(〈ξ〉s) for Op = Opx induces an isomorphism

Op(〈ξ〉s) :Ws(Rp, H)→W0(Rp, H)

with the inverse Op(〈ξ〉−s). We have

Op(Mϕη) = Op(〈ξ〉−s)Op(〈ξ〉s)Op(Mϕη)Op(〈ξ〉−s)Op(〈ξ〉s)
= Op(〈ξ〉−s)Op(fη)Op(〈ξ〉s), (3.12)

where fη(x, ξ) = 〈ξ〉s#(Mϕη〈ξ〉−s) and # is the Leibniz product between symbols
in (x, ξ). Now, we show that

‖Op(fη)‖L(W0(Rp,H)) ≤ c

for some c = cϕ > 0 independent of η ∈ Rq and cϕ → 0 as ϕ→ 0 in S(Rpx). Writing
for the moment a(ξ) = 〈ξ〉s, b(x, ξ) = ϕη(x)〈ξ〉−s, we have

fη(x, ξ) = (a#b)(x, ξ)

after Kumano-go’s formalism [16] as an oscillatory integral, namely,

fη(x, ξ) = 〈ξ〉−s
∫
Rp

∫
Rp

e−izζ〈ξ + ζ〉sϕ(〈η〉−1(x+ z))dzd−ζ.

Applying a regularization argument, we obtain

〈ξ〉sfη(x, ξ)

=

∫
Rp

∫
Rp

e−izζ〈ζ〉−2M(1−∆ζ)
N〈ξ + ζ〉s〈z〉−2N(1−∆z)

Mϕ(〈η〉−1(x+ z))dzd−ζ

for any M,N ∈ N. We choose M,N in such a way that |s| − 2M < −p,−2N < −p.
Then it follows that

|fη(x, ξ)|

≤ 〈ξ〉−s
∫
Rp

〈ζ〉−2M(1−∆ζ)
N〈ξ + ζ〉sd−ζ

∫
Rp

|〈z〉−2N(1−∆z)
Mϕ(〈η〉−1(x+ z))|dz.

(3.13)
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Let us first consider the expression

F (ξ) = 〈ξ〉−s
∫
Rp

〈ζ〉−2M(1−∆ζ)
N〈ξ + ζ〉sd−ζ.

We have

(1−∆ζ)
N〈ξ + ζ〉s =

2N∑
j=0

〈ξ + ζ〉s−jBj(ξ, ζ)

for functions Bj(ξ, ζ) satisfying the estimates

sup
ξ,ζ∈Rp

|Bj(ξ, ζ)| ≤ constant

for different positive constants. This implies that

|F (ξ)| ≤ c〈ξ〉−s
2N∑
j=0

∫
Rp

〈ζ〉−2M〈ξ + ζ〉s−jd−ζ.

Using Peetre’s inequality to the effect that 〈ξ + ζ〉t ≤ C〈ξ〉t〈ζ〉|t|, we get

〈ξ〉−s
∫
〈ζ〉−2M〈ξ + ζ〉s−jd−ζ ≤ C〈ζ〉−2M+|s−j|d−ζ ≤ C ′

for some C ′ > 0. Thus, |F (ξ)| ≤ c for some c > 0. Moreover, 〈z〉−2N(1 −
∆z)

Mϕ(〈η〉−1(x+ z)) is a finite linear combination of terms of the form

〈z〉−2NDα
z ϕ(〈η〉−1(x+ z)) = 〈η〉−|α|〈z〉−2N(Dα

z ϕ)(〈η〉−1(x+ z)), |α| ≤ 2M.

Thus, the second factor on the right hand side of (3.13) is a finite linear combination
of integrals

〈η〉−|α|
∫
〈z〉−2N |(Dα

z ϕ)(〈η〉−1(x+ z))|dz, |α| ≤ 2M. (3.14)

For ψα(〈η〉−1(x+z)) = (Dα
z ϕ)(〈η〉−1(x+z)) we obtain by substituting v = c−1(x+z)

for c = 〈η〉,∫
Rp

〈z〉−2N |ψα(〈η〉−1(x+ z))|dz =

∫
Rp

〈cv − x〉−2N |ψα(v)|cpdv

≤ sup
v∈Rp
|ψα(v)|

∫
Rp

〈cv − x〉−2Ncpdv.

Let w = cv. Then we obtain∫
Rp

〈cv − x〉−2Ncpdv =

∫
Rp

〈w − x〉−2Ndw =

∫
Rp

〈w〉−2Ndw = constant.
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It follows that
|fη(x, ξ)| ≤ c

∑
|α|≤2M

sup
x∈Rp
|Dα

xϕ(x)|.

In a similar manner, we see that for any fixed α,β ∈ Np there is a semi-norm ν(·)
on the space S(Rp) such that

sup{|Dα
xD

β
ξ fη(x, ξ)| : (x, ξ) ∈ R2p, α ≤ α, β ≤ β} ≤ cν(ϕ)

for a positive constant c, which is independent of η ∈ Rq. Let us now recall a version
of Calderón-Vaillancourt’s theorem, proved by Seiler [32]. (See also Hwang’s paper

[13] for the scalar case.) Let H and H̃ be Hilbert spaces with group actions κ and

κ̃, respectively, and let f(x, ξ) ∈ C∞(R2p,L(H, H̃)) be a function such that

π(f) = sup{‖κ̃−1
〈ξ〉{D

α
xD

β
ξ fη(x, ξ)}κ〈η〉‖L(H,H̃) : (x, ξ) ∈ R2p, α ≤ α, β ≤ β}

is finite for α = (gκ̃ + 1, . . . , gκ̃ + 1), β = (1, . . . , 1), where gκ̃ is the constant in (1.1)
corresponding to κ̃. Then

Op(f) :W0(Rp, H)→W0(Rp, H̃)

is continuous, and we have

‖Op(f)‖L(W0(Rp,H),W0(Rp,H̃)) ≤ cπ(f)

for a positive constant c > 0 independent of f . We apply this theorem to the case
H = H̃, κ = κ̃, and to f(x, ξ) = fη(x, ξ) · idH . Then for α = β = (1, . . . , 1), we have

π(fη) = sup{|Dα
xD

β
ξ fη(x, ξ)| : (x, ξ) ∈ R2p, α ≤ α, β ≤ β} ≤ cν(ϕ).

It follows that
‖Op(fη)‖L(W0(Rp,H)) ≤ cν(ϕ).

Applying (3.12), we can return to (3.11) for an arbitrary s ∈ R and obtain

sup
η∈Rq
‖χ−1
〈η〉Mϕχ〈η〉‖L(Ws(Rp,H)) ≤ cν(ϕ).

This is the only semi-norm in S0(Rq;Ws(Rp, H)κ,Ws(Rp, H)κ)χ,χ that we have to
control. Summing up, we have proved that Mϕ is a symbol as claimed and the
continuity of (3.10).

The following theorem extends Theorem 3.1 to symbols with variable coefficients.
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Theorem 3.7. Let H, H̃ and κ, κ̃ be as in Theorem 3.1. Then for

a(x, y, ξ, η) ∈ S(Rpx, S
µ(Rqy × R

p+q
ξ,η ;H, H̃)κ,κ̃)

and
p(y, η) = Opx(a)(y, η),

we have
p(y, η) ∈ Sµ(Rqy × Rqη;Ws(Rp, H)κ,Ws−µ(Rp, H̃)κ̃)χ,χ̃ (3.15)

for every s ∈ R.

Proof. Let us first observe that the extension of Theorem 3.1 to symbols

a(y, ξ, η) ∈ Sµ(Rqy × R
p+q
ξ,η ;H, H̃)κ,κ̃

is straightforward because the additional variable y as an action from the left does
not influence the proof, and we obtain (3.15) in this case. Therefore, without loss
of generality, we omit y and only consider the case

a(x, ξ, η) ∈ S(Rpx)⊗̂πE

for E = Sµ(Rp+qξ,η ;H, H̃)κ,κ̃. On the right hand side, we use the fact that

S(Rp, E) = S(Rp)⊗̂πE

for the Fréchet space E. As in the proof of Proposition 2.3 we employ a tensor
product argument. We write a(x, ξ, η) as a convergent sum

a(x, ξ, η) =
∞∑
j=0

λjMϕjaj(ξ, η)

for sequences ϕj ∈ S(Rp), aj ∈ E, tending to zero in the respective spaces as j →∞,
and λj ∈ C,

∑∞
j=0 |λj| <∞. From Proposition 3.3 we conclude that

Opx(aj)(η)→ 0

in Sµ(Rq;Ws(Rp, H)κ,Ws−µ(Rp, H̃)κ̃)χ,χ̃ and from Proposition 3.6 that

Opx(Mϕj)→ 0

in S0(Rq;Ws−µ(Rp, H̃)κ̃,Ws−µ(Rp, H̃)κ̃)χ̃,χ̃ as j →∞. The operator Opx(Mϕj) rep-
resenting a symbol that is independent of η can be still identified with the operator of
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multiplicationMϕj . Therefore, it is justified to interpret Opx(a)(η) as a convergent
sum

Opx(a)(η) =
∞∑
j=0

λjOpx(Mϕj)Opx(aj)(η)

in S(Rpx)⊗̂πSµ(Rq;Ws(Rp, H)κ,Ws−µ(Rp, H̃)κ̃)χ,χ̃ continuously embedded in

Sµ(Rq;Ws(Rp, H)κ,Ws−µ(Rp, H̃)κ̃)χ,χ̃. Thus Opx(a)(η) is an element in the latter
symbol space.

Remark 3.8. As in Corollary 3.5 we can iterate Theorem 3.7 for symbols

a(x, y1, . . . , yk, ξ, η1, η2, . . . , ηk) ∈ S(Rpx × Rq1+...+qk−1 , Sµ(Rqk ;H0, H̃0)χ0,χ̃0) (3.16)

for H0, H̃0 and χ0, χ̃0 as in Theorem 3.1. Then we have the same iterative process
to successively build up symbols

al(y
l, . . . , yk, ηl, . . . , ηk) = Opyl−1(al−1)(yl, . . . , yk, ηl, . . . , ηk)

∈ S(Rql+...+qk−1 , Sµ(Rqk × Rql+...+qk ;Hl, H̃l)χl,χ̃l)

for every 1 ≤ l ≤ k, starting with a0 = a defined by (3.16), then a1 = Opx(a0), and
so on.
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