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PSEUDO-DIFFERENTIAL OPERATORS FOR WEYL
TRANSFORMS
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Pseudo-differential operators with operator-valued symbols for Weyl
transforms are introduced. We give suitable conditions on the symbols for which
these operators are in the trace class and give a trace formula for them.
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1. Weyl Transforms

In this paper we identify R?® = R™ x R” with the complex space C" via the
obvious identification
R?" 5 (¢,p) <> g+ ip € C".

Let ¢ = (q1,92,---,qn) and p = (p1,p2,--.,pn) be points in R, and let f be
a measurable function on R™. Then we define the function p(q,p)f on R™ by

(p(g:p)f) (@) = €T f (@ 4 p), @ = (v1,20,...,2,) ER”,

where
n
gz =y gz
j=1
and

n
q-p=Y_qp;
j=1

It is clear that p(q,p) : L2(R™) — L?(R™) is a unitary operator for all ¢ and p in R™.
Let f and g be in L?(R"). Then we define the function V(f, g) on R?" by

V(£,9)(a,p) = 27)"*(p(q,D) f, 9) 128
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We call V(f, g) the Fourier—Wigner transform of f and g and the Wigner transform
W(f,g) of f and g is defined by

W(f,9)=V(f, 9",
where V(f,g)" is the Fourier transform of V(f,g). It should be noted that the

Fourier transform F' of a function F in L'(RY) is taken to be

F(¢) = (2m) /2 /]RN e CF(x)dr, €& eRYN.

An integral representation of W (f, g) is given by the following theorem.

Theorem 1.1. Let f and g be in L*(R™). Then

TP (x + g) g (m — g)dp

W(s.)w8) = m) 2 [ .

for all x and £ in R™.

n

Let u € L'(C™). Then we define the Weyl transform of u to be the bounded
linear operator W, : L2(R") — L?(R"™) given by

Wl g)raeey = 20) ™2 [ [ (e, W(F.0)(0,) do de

for all f and g in L?(R"™). That W, : L2(R") — L?(R") is a bounded linear operator
is easy to see. Indeed, for all ¢ and 9 in the Schwartz space $(R™), by Theorem 1.1,

2 n/2
Wie )@l < (2) loloan vl ot
Thus,
(Wap D)z < @072 [ Jute, )] W (o, 0) 0, €) e de
o ([ [ w6l deds ) Bollagellolage

= 7 "ullzremllelz@mll¥l Lz @)

IN

At this point, it is good to have a pause and reflect that Weyl transforms
W, have hitherto been studied as symmetric forms of pseudo-differential operators
with symbols u. See [7, 8] in this connection. This may be considered as the first
generation in which the symbols of pseudo-differential operators are functions.

A more in-depth study of Weyl transforms requires a recall of Hilbert—Schmidt
operators and trace class operators [5, 9]. Let X be an infinite-dimensional complex
and separable Hilbert space. Let A be a compact operator on X. If we denote the
adjoint of A by A*, then vV A*A is a compact and self-adjoint operator on X. By
the spectral theorem, we can find an orthonormal basis {pr : £ = 1,2,...} for X
consisting of eigenvectors of vV A*A. For k = 1,2,..., let s be the eigenvalue of
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Vv A* A corresponding to the eigenvector . Then for 1 < p < 0o, A is said to be in
the Schatten—von Neumann class S, if

o0

p
D sk <o
i

If A€ Sy, then the norm [|Al|s, of A is defined by

fe'e) 1/19
Als, = {zsz} |
k=1

The class Ss is simply the C*-algebra of all bounded linear operators on X. It is
obvious that
S51CSC---CS«

and
[lsy = [ Mlsy = =[] [ soe-

Of particular importance are the operators in S; and Sy known as trace class
operators and Hilbert—Schmidt operators respectively. The following facts on .Sy
and Sy are used in this paper.

Theorem 1.2. For 1 <p < oo, S, is a two-sided ideal in Su.

Theorem 1.3. A compact operator A on X is in Sy if and only if there exist two
operators B and C in Sy such that

A= BC.

Theorem 1.4. Let A : L>(R") — L?(R") be a compact operator. Then A € Sy if
and only if there exists a function k in L*(R™ x R™) such that

(Af)(x) = / ke y)fw)dy, wER"

Moreover, if A € Sy, then

1/2
HAHSQ:(/ / \k(x,y>2dxdy) |
R™ JR™

Let k € L?(R" x R™). Then we denote the corresponding Hilbert—Schmidt
operator on L?(R") by Ay.
Theorem 1.5. Let g and h be functions in L>(R"™ x R"™). Then
AgAp = Agon,
where

(g0 h)(z,w) = / 9(z, OR(C,w)dC, 7w € R™.

n

A fundamental result in the analysis of Weyl transforms is the following the-
orem.
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Theorem 1.6. Let u € L?>(C"). Then W, : L*(R") — L*(R") is a Hilbert-Schmidt
operator and

Wl < Walls, = (2m) "2 Jull L2y,
where || ||« is the norm in the C*-algebra of all bounded linear operators on L*(R™).

The converse of Theorem 1.6 is also true. In other words, every Hilbert—
Schmidt operator on L?(R") is a Weyl transform W, with symbol o in L?(C").

Another important result is the following integral representation of the Weyl
transform.

Theorem 1.7. Let u € L?>(C"). Then for all f in L*(R™),

Wuf = (QW)_”/H /n u(q,p)p(q,p)f dqdp.

The starting point of this paper is the following inversion formula for the Weyl
transform [1, 6].

Theorem 1.8. Let u be a Schwartz function on C". Then
u(z) = tr(p(z)"Wy), =ze€C"
where U is the inverse Fourier transform of u.

Let 0 : C* — B(L?*(R")). Then we define the pseudo-differential operator
T, : L*(C") — L*(C") by

(Tou)(2) = tr(pl(=) o (:)Wa), =€ C,

for all Schwartz functions u on C". We call T, the pseudo-differential operator
for the Weyl transform with operator-valued symbol or just simply symbol o. As
pseudo-differential operators with symbols given by operators instead of functions,
we may consider these operators to be in the second generation of pseudo-differential
operators. The usefulness of these second-generation pseudo-differential operators
lies in the realm of noncommutative quantizations, which we briefly sketch here. See
[2] for details. To wit, in classical (commutative) quantizations, observables given by
functions of positions z and momentum £ in R™ are quantized to give rise to linear
operators on Hilbert spaces in general and pseudo-differential operators on L?(R") in
particular. The viewpoint to be popularized here is that the classical observables are
first quantized to Weyl transforms, which are noncommutative linear operators on
L?(R™), and then pseudo-differential operators on L?(R") are built as quantizations
of the first-generation quantizations.

The aim of this paper is to give conditions for which these operators are
Hilbert—Schimdt and in the trace class, and give a trace formula for these trace class
operators.

In Section 2 we give the boundedness, and in Section 3 the Hilbert—Schmidt
property of pseudo-differential operators for the Weyl transform on L?(C"). In
Section 4, we give a class of trace class pseudo-differential operators for the Weyl
transform on L?(C") and give a trace formula for these operators.

Related results can be found in the paper [3].
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2. L?-Boundedness

Theorem 2.1. Let o : C" — Sy be such that

/Cn lo(2)]12,d= < oo.

Then the pseudo-differential operator T, : L*(C") — L*(C") is a bounded linear
operator. Moreover,

1/2
ITele < ) ([ lolaz)

where || ||« is the norm in the C*-algebra of all bounded linear operators on L?(C™).

Proof For all functions v in L?(C"),
Tl = [ Ier(p(e) o) Wa) P

< /@ o (2113, [ Wall2, dz

= 0 ([ lo Rz ) sy
O

Remark 2.1. That some conditions on the mapping ¢ : C" — S5 like the one in
the hypothesis of Theorem 2.1 is required can be seen from the following example.
Example 2.1. Let o € L?(C") and let o : C* — S5 be the symbol given by

0(z) = p(2)W,, =ze€C"
Then for all functions  in L?(C"),

(Tou)(z) = tr(Wy), =ze€C",

and obviously, T,u ¢ L?(C") unless tr(Wy) = 0.

We need the following proposition for the rest of the paper. It states that
different symbols give different pseudo-differential operators.

Theorem 2.2. Let o : C" — S5 be such that

/ L ||0(Z)||%2dz < 00.
Furthermore, suppose that the mapping
C" 3z p(2)*0(2) € S2 (2.1)

1s weakly continuous. Then
T, =0=0=0.
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Proof For all u in L?(C"), we get
(Thu)(z) = tr(p(z)*o(2)Wy) =0, ze€C".
Now, for all z in C", let u, be the function in L?(C") such that
Wy = p(2)o(2)"
Then for all w in C",
(Touz)(w) = tr(p(w) o (w)p(z)o(2)"). (2.2)

Now, T,u, is continuous on C". Indeed, let zy € C". Then by the weak
continuity of the mapping (2.1),

tr(p(w) o (w)p(2)o(2)") = tr(p(z0) "o (20)p(2)0(2)")
as w — zp in C". If we let w = z in (2.2), then
(Truz)(2) = tr(a(2)a(2)") = llo(2)]5, = 0.

Thus, o(z) = 0 for all z in C", as asserted. O

3. Hilbert—Schmidt Operators

Theorem 3.1. Let 0 : C" — Sy be such that the hypotheses of Theorem 2.2 are
satisfied. Then the pseudo-differential operator T, : L*(C") — L?(C") is a Hilbert-
Schmadt operator if and only if

o(z) = p(2)Wy(y, z€C",
where o : C* — L?(C") is a weakly continuous mapping such that
/(C" Ha(z)H%g(Cn)dz < 0. (3.1)
Moreover

1/2

Tl = @02 ([ o) s )
Proof For all functions u in L?(C"), we get by formula (3.7) in [4]

(Lu)z) = te(p"(x)o()Wa)

where
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But, using Fubini’s theorem and (3.1),

/n /n (z,w)|2dz dw
= (2m) /n/n w)|?dz dw
= e [ ([ \(a(z))(w)\zdw) &

_ (am) /C lov(2) 32y < 0. (3.3)
Therefore T, : L*(C") — L?(C") is a Hilbert-Schmidt operator. The converse can

be proved by reversing the argument and using Theorem 2.2 Moreover, by (6.17)
and Theorem 7.5 in [7], and (3.2) we get

T H52 / / (z,w)|*dz dw,

1/2
|T5|ls, = (2m)™" HOC(Z)H%Z(Cn)dZ :
(Cn

and hence by (3.3),

We give in the following theorem a stronger result than Theorem 3.1.

Theorem 3.2. Let o : C* — B(L*(R")). Then the pseudo-differential operator
T, : L?>(C") — L?(C") is a Hilbert-Schmidt operator if and only if o satisfies the
hypotheses of Theorem 2.2. Moreover, if the hypotheses of Theorem 2.2 hold, then

1/2
T, = @02 ([ loGaends)
Proof Suppose that
L lo@Iaydz < .
Then there exists a function h(z) in L?(C") such that

o(2) = p(2)An(z) (3.4)

for almost all z in C", where Aj,(.) is the Hilbert—Schmidt operator with kernel h(z).
By (6.17) in the book [7], we get for almost all z in C",

where
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and there is an explicit formula for K ! that is not needed in this proof. All we
need to know about K~ is that it is a unitary operator on L?(C"). Thus,

/ la(2)l[72cnydz = (27r)"/ 151 (7(2)) |72 cnyd2
(Cn (Cn

= " [ Iz < o

The converse can be proved as in Theorem 3.1 by reversing the argument and invok-
ing Theorem 2.2. So, by Theorem 3.1, T,, : L?(C") — L?(C") is a Hilbert—Schmidt
operator. By Theorem 3.1, we get

T, = [ o) Eaenyds = 2" [ 1) Eaonyd

By (3.4),
lo(2)lls, = 1A (2)[| L2 (cn)

for almost all z in C". Therefore
I, = )" [ ()

and this completes the proof. O

4. Trace Class Operators

We give an analog of Theorem 3.1 for trace class pseudo-differential operators
for the Weyl transform on L2(C").

Theorem 4.1. Let o : C* — Sy be a symbol such that the hypotheses of Theorem
2.2 are satisfied. Then the pseudo-differential operator T, : L>(C") — L?*(C") is a
trace class operator if and only if

o(z) = p(2)Wi(sy, 2€C"
where k € L?(C™ x C") is such that kf : C* — L*(C™) given by
K (2)(w) = k(z,w), zweCm,

is a weakly continuous mapping and there exist functions g and h in L*(C" x C")

for which
k=goh.

If the conditions for trace class operators hold, then
tr(7,) = (27r)"/ (F5 k) (2, 2) dz,

where 3"2_113 denotes the inverse of the partial Fourier transform of k with respect to
the “second” variable.

We begin with a lemma.
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Lemma 4.1. Let 9’5”{: be as in the preceding theorem. Then
/n (5 k) (2, 2)| dz < o0.
Proof The starting point is the formula
@ 0w = [ 000 NE ), swed,

Then by Minkowski’s inequality in integral form and Plancherel’s formula for the
Fourier transform, we get

/ (T3 k) (2, 2)] dz
(CTL

:/n

dz

[ 9tz 03 i 2l

< AL ool e ol ac

< [ AL oora) [ meope)

= [ AL eora} L] |h<<,z>r2dz}1/2d<

[ Lcarsaf [ fncorea)”

= |l9llz2crxcmy Il L2 (cnxcny < o0
O

Proof of Theorem 4.1 As in the proof of Theorem 3.1, we get for all u in L?(C"),

(Tyu)(2) = (271')”/n k(z,w)u(w)dw, =ze C".

Then using the product formula for two Hilbert—Schmidt operators in, say, Theorem
5.2 in [7], we get

AgAy = Agon.

So,

(Tou)(2) = ((AgAn)(0))(2), =€ C"
Therefore

T, = AgAF 1 e Sy,

By Lemma 4.1,

tr(7,) = (27r)"/ (F5 k) (2, 2) dz,
as claimed. O
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