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Pseudo-differential operators with operator-valued symbols for Weyl

transforms are introduced. We give suitable conditions on the symbols for which

these operators are in the trace class and give a trace formula for them.

Keywords: Weyl transforms, pseudo-differential operators, symbols, noncom-

mutative quantizations, L2-boundedness, Hilbert–Schmidt operators, trace class

operators, traces

MSC2000: 47 G 30

1. Weyl Transforms

In this paper we identify R2n = Rn × Rn with the complex space Cn via the

obvious identification

R2n ∋ (q, p) ↔ q + ip ∈ Cn.

Let q = (q1, q2, . . . , qn) and p = (p1, p2, . . . , pn) be points in Rn, and let f be

a measurable function on Rn. Then we define the function ρ(q, p)f on Rn by

(ρ(q, p)f)(x) = eiq·x+i(q·p)/2f(x+ p), x = (x1, x2, . . . , xn) ∈ Rn,

where

q · x =

n∑
j=1

qjxj

and

q · p =
n∑

j=1

qjpj .

It is clear that ρ(q, p) : L2(Rn) → L2(Rn) is a unitary operator for all q and p in Rn.

Let f and g be in L2(Rn). Then we define the function V (f, g) on R2n by

V (f, g)(q, p) = (2π)−n/2(ρ(q, p)f, g)L2(Rn).
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We call V (f, g) the Fourier–Wigner transform of f and g and the Wigner transform

W (f, g) of f and g is defined by

W (f, g) = V (f, g)∧,

where V (f, g)∧ is the Fourier transform of V (f, g). It should be noted that the

Fourier transform F̂ of a function F in L1(RN ) is taken to be

F̂ (ξ) = (2π)−N/2

∫
RN

e−ix·ξF (x) dx, ξ ∈ RN .

An integral representation of W (f, g) is given by the following theorem.

Theorem 1.1. Let f and g be in L2(Rn). Then

W (f, g)(x, ξ) = (2π)−n/2

∫
Rn

e−iξ·pf
(
x+

p

2

)
g
(
x− p

2

)
dp

for all x and ξ in Rn.

Let u ∈ L1(Cn). Then we define the Weyl transform of u to be the bounded

linear operator Wu : L2(Rn) → L2(Rn) given by

(Wuf, g)L2(Rn) = (2π)−n/2

∫
Rn

∫
Rn

u(x, ξ)W (f, g)(x, ξ) dx dξ

for all f and g in L2(Rn). That Wu : L2(Rn) → L2(Rn) is a bounded linear operator

is easy to see. Indeed, for all φ and ψ in the Schwartz space S(Rn), by Theorem 1.1,

|W (φ,ψ)(x, ξ)| ≤
(
2

π

)n/2

∥φ∥L2(Rn)∥ψ∥L2(Rn), x, ξ ∈ Rn.

Thus,

|(Wuφ,ψ)L2(Rn)| ≤ (2π)−n/2

∫
Rn

∫
Rn

|u(x, ξ)| |W (φ,ψ)(x, ξ)|dx dξ

≤ π−n

(∫
Rn

∫
Rn

|u(x, ξ)| dx dξ
)
∥φ∥L2(Rn)∥ψ∥L2(Rn)

= π−n∥u∥L1(Cn)∥φ∥L2(Rn)∥ψ∥L2(R).

At this point, it is good to have a pause and reflect that Weyl transforms

Wu have hitherto been studied as symmetric forms of pseudo-differential operators

with symbols u. See [7, 8] in this connection. This may be considered as the first

generation in which the symbols of pseudo-differential operators are functions.

A more in-depth study of Weyl transforms requires a recall of Hilbert–Schmidt

operators and trace class operators [5, 9]. Let X be an infinite-dimensional complex

and separable Hilbert space. Let A be a compact operator on X. If we denote the

adjoint of A by A∗, then
√
A∗A is a compact and self-adjoint operator on X. By

the spectral theorem, we can find an orthonormal basis {φk : k = 1, 2, . . . } for X

consisting of eigenvectors of
√
A∗A. For k = 1, 2, . . . , let sk be the eigenvalue of
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√
A∗A corresponding to the eigenvector φk. Then for 1 ≤ p <∞, A is said to be in

the Schatten–von Neumann class Sp if

∞∑
k=1

spk <∞.

If A ∈ Sp, then the norm ∥A∥Sp of A is defined by

∥A∥Sp =

{ ∞∑
k=1

spk

}1/p

.

The class S∞ is simply the C∗-algebra of all bounded linear operators on X. It is

obvious that

S1 ⊂ S2 ⊂ · · · ⊂ S∞

and

∥ ∥S1 ≥ ∥∥S2 ≥ · · · ≥ ∥ ∥S∞ .

Of particular importance are the operators in S1 and S2 known as trace class

operators and Hilbert–Schmidt operators respectively. The following facts on S1
and S2 are used in this paper.

Theorem 1.2. For 1 ≤ p <∞, Sp is a two-sided ideal in S∞.

Theorem 1.3. A compact operator A on X is in S1 if and only if there exist two

operators B and C in S2 such that

A = BC.

Theorem 1.4. Let A : L2(Rn) → L2(Rn) be a compact operator. Then A ∈ S2 if

and only if there exists a function k in L2(Rn × Rn) such that

(Af)(x) =

∫
Rn

k(x, y)f(y) dy, x ∈ Rn.

Moreover, if A ∈ S2, then

∥A∥S2 =

(∫
Rn

∫
Rn

|k(x, y)|2dx dy
)1/2

.

Let k ∈ L2(Rn × Rn). Then we denote the corresponding Hilbert–Schmidt

operator on L2(Rn) by Ak.

Theorem 1.5. Let g and h be functions in L2(Rn × Rn). Then

AgAh = Ag◦h,

where

(g ◦ h)(z, w) =
∫
Rn

g(z, ζ)h(ζ, w) dζ, z, w ∈ Rn.

A fundamental result in the analysis of Weyl transforms is the following the-

orem.



6 Xiaoxi Duan, M.W. Wong

Theorem 1.6. Let u ∈ L2(Cn). Then Wu : L2(Rn) → L2(Rn) is a Hilbert–Schmidt

operator and

∥Wu∥∗ ≤ ∥Wu∥S2 = (2π)−n/2∥u∥L2(Cn),

where ∥ ∥∗ is the norm in the C∗-algebra of all bounded linear operators on L2(Rn).

The converse of Theorem 1.6 is also true. In other words, every Hilbert–

Schmidt operator on L2(Rn) is a Weyl transform Wσ with symbol σ in L2(Cn).

Another important result is the following integral representation of the Weyl

transform.

Theorem 1.7. Let u ∈ L2(Cn). Then for all f in L2(Rn),

Wuf = (2π)−n

∫
Rn

∫
Rn

û(q, p)ρ(q, p)f dq dp.

The starting point of this paper is the following inversion formula for the Weyl

transform [1, 6].

Theorem 1.8. Let u be a Schwartz function on Cn. Then

u(z) = tr(ρ(z)∗Wǔ), z ∈ Cn,

where ǔ is the inverse Fourier transform of u.

Let σ : Cn → B(L2(Rn)). Then we define the pseudo-differential operator

Tσ : L2(Cn) → L2(Cn) by

(Tσu)(z) = tr(ρ(z)∗σ(z)Wǔ), z ∈ Cn,

for all Schwartz functions u on Cn. We call Tσ the pseudo-differential operator

for the Weyl transform with operator-valued symbol or just simply symbol σ. As

pseudo-differential operators with symbols given by operators instead of functions,

we may consider these operators to be in the second generation of pseudo-differential

operators. The usefulness of these second-generation pseudo-differential operators

lies in the realm of noncommutative quantizations, which we briefly sketch here. See

[2] for details. To wit, in classical (commutative) quantizations, observables given by

functions of positions x and momentum ξ in Rn are quantized to give rise to linear

operators on Hilbert spaces in general and pseudo-differential operators on L2(Rn) in

particular. The viewpoint to be popularized here is that the classical observables are

first quantized to Weyl transforms, which are noncommutative linear operators on

L2(Rn), and then pseudo-differential operators on L2(Rn) are built as quantizations

of the first-generation quantizations.

The aim of this paper is to give conditions for which these operators are

Hilbert–Schimdt and in the trace class, and give a trace formula for these trace class

operators.

In Section 2 we give the boundedness, and in Section 3 the Hilbert–Schmidt

property of pseudo-differential operators for the Weyl transform on L2(Cn). In

Section 4, we give a class of trace class pseudo-differential operators for the Weyl

transform on L2(Cn) and give a trace formula for these operators.

Related results can be found in the paper [3].
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2. L2-Boundedness

Theorem 2.1. Let σ : Cn → S2 be such that∫
Cn

∥σ(z)∥2S2
dz <∞.

Then the pseudo-differential operator Tσ : L2(Cn) → L2(Cn) is a bounded linear

operator. Moreover,

∥Tσ∥∗∗ ≤ (2π)−n/2

(∫
Cn

∥σ(z)∥2S2
dz

)1/2

,

where ∥ ∥∗∗ is the norm in the C∗-algebra of all bounded linear operators on L2(Cn).

Proof For all functions u in L2(Cn),

∥Tσu∥2L2(Cn) =

∫
Cn

|tr(ρ(z)∗σ(z)Wǔ)|2dz

≤
∫
C
∥σ(z)∥2S2

∥Wǔ∥2S2
dz

= (2π)−n

(∫
Cn

∥σ(z)∥2S2
dz

)
∥u∥2L2(Cn).

�

Remark 2.1. That some conditions on the mapping σ : Cn → S2 like the one in

the hypothesis of Theorem 2.1 is required can be seen from the following example.

Example 2.1. Let α ∈ L2(Cn) and let σ : Cn → S2 be the symbol given by

σ(z) = ρ(z)Wα, z ∈ Cn.

Then for all functions u in L2(Cn),

(Tσu)(z) = tr(Wǔ), z ∈ Cn,

and obviously, Tσu /∈ L2(Cn) unless tr(Wǔ) = 0.

We need the following proposition for the rest of the paper. It states that

different symbols give different pseudo-differential operators.

Theorem 2.2. Let σ : Cn → S2 be such that∫
Cn

∥σ(z)∥2S2
dz <∞.

Furthermore, suppose that the mapping

Cn ∋ z 7→ ρ(z)∗σ(z) ∈ S2 (2.1)

is weakly continuous. Then

Tσ = 0 ⇒ σ = 0.
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Proof For all u in L2(Cn), we get

(Tσu)(z) = tr(ρ(z)∗σ(z)Wǔ) = 0, z ∈ Cn.

Now, for all z in Cn, let uz be the function in L2(Cn) such that

W(uz)∨ = ρ(z)σ(z)∗.

Then for all w in Cn,

(Tσuz)(w) = tr(ρ(w)∗σ(w)ρ(z)σ(z)∗). (2.2)

Now, Tσuz is continuous on Cn. Indeed, let z0 ∈ Cn. Then by the weak

continuity of the mapping (2.1),

tr(ρ(w)∗σ(w)ρ(z)σ(z)∗) → tr(ρ(z0)
∗σ(z0)ρ(z)σ(z)

∗)

as w → z0 in Cn. If we let w = z in (2.2), then

(Tσuz)(z) = tr(σ(z)σ(z)∗) = ∥σ(z)∥2S2
= 0.

Thus, σ(z) = 0 for all z in Cn, as asserted. �

3. Hilbert–Schmidt Operators

Theorem 3.1. Let σ : Cn → S2 be such that the hypotheses of Theorem 2.2 are

satisfied. Then the pseudo-differential operator Tσ : L2(Cn) → L2(Cn) is a Hilbert–

Schmidt operator if and only if

σ(z) = ρ(z)Wα(z), z ∈ Cn,

where α : Cn → L2(Cn) is a weakly continuous mapping such that∫
Cn

∥α(z)∥2L2(Cn)dz <∞. (3.1)

Moreover

∥Tσ∥S2 = (2π)−n/2

(∫
Cn

∥α(z)∥2L2(Cn)dz

)1/2

.

Proof For all functions u in L2(Cn), we get by formula (3.7) in [4]

(Tσu)(z) = tr(ρ∗(z)σ(z)Wǔ)

= tr(Wα(z)Wǔ)

= (2π)−n

∫
Cn

(α(z))(w)ǔ(w) dw

=

∫
Cn

K(z, w)ǔ(w) dw,

where

K(z, w) = (2π)−n(α(z))(w), z, w ∈ Cn. (3.2)



Pseudo-Differential Operators for Weyl Transforms 9

But, using Fubini’s theorem and (3.1),∫
Cn

∫
Cn

|K(z, w)|2dz dw

= (2π)−2n

∫
Cn

∫
Cn

|(α(z))(w)|2dz dw

= (2π)−2n

∫
Cn

(∫
Cn

|(α(z))(w)|2dw
)
dz

= (2π)−2n

∫
Cn

∥α(z)∥2L2(Cn)dz <∞. (3.3)

Therefore Tσ : L2(Cn) → L2(Cn) is a Hilbert–Schmidt operator. The converse can

be proved by reversing the argument and using Theorem 2.2 Moreover, by (6.17)

and Theorem 7.5 in [7], and (3.2) we get

∥Tσ∥2S2
=

∫
Cn

∫
Cn

|K(z, w)|2dz dw,

and hence by (3.3),

∥Tσ∥S2 = (2π)−n

{∫
Cn

∥α(z)∥2L2(Cn)dz

}1/2

.

�
We give in the following theorem a stronger result than Theorem 3.1.

Theorem 3.2. Let σ : Cn → B(L2(Rn)). Then the pseudo-differential operator

Tσ : L2(Cn) → L2(Cn) is a Hilbert–Schmidt operator if and only if σ satisfies the

hypotheses of Theorem 2.2. Moreover, if the hypotheses of Theorem 2.2 hold, then

∥Tσ∥S2 = (2π)n/2
(∫

Cn

∥σ(z)∥2L2(Cn)dz

)1/2

.

Proof Suppose that ∫
Cn

∥σ(z)∥2L2(Cn)dz <∞.

Then there exists a function h(z) in L2(Cn) such that

σ(z) = ρ(z)Ah(z) (3.4)

for almost all z in Cn, where Ah(z) is the Hilbert–Schmidt operator with kernel h(z).

By (6.17) in the book [7], we get for almost all z in Cn,

σ(z) = ρ(z)Wα(z),

where

α(z) = (2π)n/2K−1(h(z))
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and there is an explicit formula for K−1 that is not needed in this proof. All we

need to know about K−1 is that it is a unitary operator on L2(Cn). Thus,∫
Cn

∥α(z)∥2L2(Cn)dz = (2π)n
∫
Cn

∥K−1(h(z))∥2L2(Cn)dz

= (2π)n
∫
Cn

∥h(z)∥2L2(Cn)dz <∞.

The converse can be proved as in Theorem 3.1 by reversing the argument and invok-

ing Theorem 2.2. So, by Theorem 3.1, Tσ : L2(Cn) → L2(Cn) is a Hilbert–Schmidt

operator. By Theorem 3.1, we get

∥Tσ∥2S2
=

∫
Cn

∥α(z)∥2L2(Cn)dz = (2π)n
∫
Cn

∥h(z)∥2L2(Cn)dz.

By (3.4),

∥σ(z)∥S2 = ∥h(z)∥L2(Cn)

for almost all z in Cn. Therefore

∥Tσ∥2S2
= (2π)n

∫
Cn

∥σ(z)∥2S2
dz

and this completes the proof. �

4. Trace Class Operators

We give an analog of Theorem 3.1 for trace class pseudo-differential operators

for the Weyl transform on L2(Cn).

Theorem 4.1. Let σ : Cn → S2 be a symbol such that the hypotheses of Theorem

2.2 are satisfied. Then the pseudo-differential operator Tσ : L2(Cn) → L2(Cn) is a

trace class operator if and only if

σ(z) = ρ(z)Wk(z,·), z ∈ Cn,

where k ∈ L2(Cn × Cn) is such that k♯ : Cn → L2(Cn) given by

k♯(z)(w) = k(z, w), z, w ∈ Cn,

is a weakly continuous mapping and there exist functions g and h in L2(Cn × Cn)

for which

k = g ◦ h.

If the conditions for trace class operators hold, then

tr(Tσ) = (2π)−n

∫
Cn

(F−1
2 k)(z, z) dz,

where F−1
2 k denotes the inverse of the partial Fourier transform of k with respect to

the “second” variable.

We begin with a lemma.
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Lemma 4.1. Let F−1
2 k be as in the preceding theorem. Then∫

Cn

|(F−1
2 k)(z, z)| dz <∞.

Proof The starting point is the formula

(F−1
2 k)(z, w) =

∫
Cn

g(z, ζ)(F−1
2 h)(ζ, w) dζ, z, w ∈ Cn.

Then by Minkowski’s inequality in integral form and Plancherel’s formula for the

Fourier transform, we get∫
Cn

|(F−1
2 k)(z, z)| dz

=

∫
Cn

∣∣∣∣∫
Cn

g(z, ζ)(F−1
2 h)(ζ, z)|dζ

∣∣∣∣ dz
≤

∫
Cn

{∫
Cn

|g(z, ζ)| |(F−1
2 h)(ζ, z)| dz

}
dζ

≤
∫
Cn

{∫
Cn

|g(z, ζ)|2dz
}1/2{∫

Cn

|h(ζ, z)|2dz
}1/2

dζ

=

∫
Cn

{∫
Cn

|g(z, ζ)|2dz
}1/2{∫

Cn

|h(ζ, z)|2dz
}1/2

dζ

≤
{∫

Cn

∫
Cn

|g(z, ζ)|2dz dζ
}1/2{∫

Cn

∫
Cn

|h(ζ, z)|2dz dζ
}1/2

= ∥g∥L2(Cn×Cn)∥h∥L2(Cn×Cn) <∞.

�

Proof of Theorem 4.1 As in the proof of Theorem 3.1, we get for all u in L2(Cn),

(Tσu)(z) = (2π)−n

∫
Cn

k(z, w)ǔ(w) dw, z ∈ Cn.

Then using the product formula for two Hilbert–Schmidt operators in, say, Theorem

5.2 in [7], we get

AgAh = Ag◦h.

So,

(Tσu)(z) = ((AgAh)(ǔ))(z), z ∈ Cn.

Therefore

Tσ = AgAhF
−1 ∈ S1.

By Lemma 4.1,

tr(Tσ) = (2π)−n

∫
Cn

(F−1
2 k)(z, z) dz,

as claimed. �
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