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1 Introduction

In [8] among others, pseudo-differential operators on Rn are built on the
Fourier inversion formula for the Fourier transform on Rn. The Fourier
transform on the Heisenberg group is defined in terms of the Schrödinger
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representations of the Heisenberg group on L2(Rn) and the Fourier inversion
formula for the Fourier transform on the Heisenberg group can then be
used to define pseudo-differential operators with operator-valued symbols
on the Heisenberg group. A key technique in studying pseudo-differential
operators on the Heisenberg group in [2] is to express the Fourier transform
on the Heisenberg group in terms of Weyl transforms on Rn, which has been
studied extensively in [6]. The aim of this paper is to look at the Fourier
transform on H-type groups based on the Schrödinger representations of
H-type groups on L2(Rn) explained in the appendix of [4] and prove that
Fourier transforms on H-type groups are Weyl transforms on Rn. As such,
the results in [2] can then be formulated verbatim on H-type groups.

For the sake of completeness and transparency, we first recall in Section 2
how to set up pseudo-differential operators on the Heisenberg group. H-type
groups and their Schrödinger representations on L2(Rn) are recapitulated
without proofs in Section 3. λ-Weyl transforms for H-type groups are intro-
duced in Section 4 and proved to be |λ|-Weyl transforms for the Heisenberg
group. That the Fourier transform on a H-type group is a classical Weyl
transform on Rn is proved in Section 5.

2 The Heisenberg Group

If we identify Rn × Rn with Cn via the obvious identification

R
n × Rn 3 (q, p)↔ q + ip ∈ Cn,

and we let
H
n = Cn × R,

then Hn becomes a noncommutative group when equipped with the multi-
plication · given by

(z, t) · (w, s) =

(
z + w, t+ s+

1

2
ω(z, w)

)
, (z, t), (w, s) ∈ Hn,

where ω(z, w) is the symplectic form of

z = (z1, . . . , zn)

and
w = (w1, . . . , wn)
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defined by

ω(z, w) = Im (z · w) = Im
n∑
j=1

zjwj.

In fact, Hn is a unimodular Lie group on which the Haar measure is just
the ordinary Lebesgue measure dz dt.

One of the most fundamental problems in the analysis on a Lie group
is the classification of all irreducible and unitary representations of the Lie
group. To that end for the Heisenberg group Hn, we let R∗ = R\{0} and let
U(L2(Rn)) be the group of all unitary operators on L2(Rn). For all λ ∈ R∗,
we let ρλ : Hn → U(L2(Rn)) be the mapping defined by

(ρλ(z, t)f)(x) = eiλteλ(iq·x+(iq·p/2))f(x+ p), x ∈ Rn,

for all f in L2(Rn). Then it can be proved that ρλ : Hn → U(L2(Rn)) is an
irreducible and unitary representation of Hn on L2(Rn). In fact, the Stone–
von Neumann theorem says that these are essentially all the irreducible
and unitary representations of Hn on L2(Rn). More precisely, we have the
following Stone–von Neumann theorem.

Theorem 2.1 If ρ : Hn → U(X) is an irreducible and unitary representa-
tion of H1 on X, where U(X) is the group of all unitary operators on an
infinite-dimensional, separable and complex Hilbert space X, such that there
exists a real number λ in R∗ for which

ρ(0, t) = eiλtI, t ∈ R,

where I is the identity operator on X, then ρ is unitarily equivalent to ρλ in
the sense that there exists a bijective isometry U : X → L2(Rn) such that

ρ(z, t) = U−1ρλ(z, t)U, (z, t) ∈ Hn.

Henceforth, the identification of {ρλ : λ ∈ R∗} with R∗ will be used.
Now, let f ∈ L1(Hn) and let λ ∈ R∗. Then we define the Fourier transform
f̂(λ) of f at λ to be the bounded linear operator from L2(Rn) into L2(Rn)
given by

f̂(λ)ϕ =

∫ ∞
−∞

∫
Cn

f(z, t)ρλ(z, t)ϕdz dt

for all ϕ ∈ L2(Rn). In fact, the following result is valid.
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Theorem 2.2 Let f ∈ L2(Hn) and let λ ∈ R∗. Then f̂(λ) : L2(Rn) →
L2(Rn) is a Hilbert–Schmidt operator. In fact,∫ ∞

−∞
‖f̂(λ)‖2

S2
dµ(λ) = ‖f‖2

L2(Hn),

where ‖ ‖S2 stands for the norm in the Hilbert space S2 of all Hilbert–Schmidt
operators on L2(Rn) and dµ(λ) = (2π)−(n+1)|λ|ndλ.

Remark 2.3 The formula in Theorem 2.2 is known as Plancherel’s formula
and the measure dµ(λ) is called the Plancherel measure on the Heisenberg
group.

The starting point for the analysis of pseudo-differential operators on
the Heisenberg group in [2] is the following Fourier inversion formula for
the Fourier transform on the Heisenberg group.

Theorem 2.4 Let f be a function in the Schwartz space S(Hn) on Hn.
Then for all (z, t) ∈ Hn,

f(z, t) =

∫ ∞
−∞

tr(ρλ(z, t)
∗f̂(λ))dµ(λ),

where ρλ(z, t)
∗ is the adjoint of ρλ(z, t).

The theory of the Heisenberg group hitherto described can be found in
many places, e.g., in [5, 7].

Let B(L2(Rn)) be the C∗-algebra of all bounded linear operators on
L2(Rn). Then we call a mapping σ : Hn × R∗ → B(L2(Rn)) an operator-
valued symbol or simply a symbol. Given a symbol σ : Hn × R∗ →
B(L2(Rn)), we define the pseudo-differential operator Tσ : L2(Hn)→ L2(Hn)
by

(Tσf)(z, t) =

∫ ∞
−∞

tr(ρ∗λ(z, t)σ(z, t, λ)f̂(λ)) dµ(λ), (z, t) ∈ Hn,

for all f in S(Hn).
Results closely related to the paper [2] and the results in this paper are

in [3].
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3 H-Type Groups

Let g be a (2n+m)-dimensional real Lie algebra equipped with a Lie bracket
[ , ] : g × g → g. Suppose that there exists an inner product ( , ) in g such
that

[z⊥, z⊥] = z,

where z⊥ is the orthogonal complement of z, and for every nonzero λ in z,
the mapping Jλ : z⊥ → z⊥ defined by

(JλV,W ) = (λ, [V,W ]), V,W ∈ z⊥,

is orthogonal whenever (λ, λ) = 1. Then we call g a H-type Lie algebra. It
is easy to check that for every nonzero element λ in z,

J2
λ = −I.

A H-type group G is a connected and simply connected Lie group G
such that the corresponding Lie algebra g is a H-type Lie algebra.

It can be proved [1] thatG is a H-type group if and only ifG is isomorphic
to R2n × Rm equipped with the group law · given by

(z, t) · (w, s) =

(
z + w, t+ s+

1

2
ω(z, w)

)
, (z, t), (w, s) ∈ G,

where ω(z, w) is a point in Rm of which the jth entry is (U (j)z, w) and
U (1), . . . , U (m) are 2n × 2n skew-symmetric and orthogonal matrices such
that

U (j)U (k) + U (k)U (j) = 0

for all j, k = 1, . . . ,m with j 6= k.
Let Rm∗ = Rm \ {0}. Then for λ ∈ Rm∗, let Rλ ∈ O(2n,R) be such that

Jλ = RλJR
t
λ,

where J is the symplectic matrix of order 2n× 2n given by

J =

 0 −In
In 0

 .
Here In denotes the identity matrix of order n and Rt

λ is the transpose
of Rλ. The following lemma in [4] establishes a useful link between the
representations of G and those of the Heisenberg group Hn.
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Lemma 3.1 The mapping αλ : G→ H
n given by

αλ(z, t) =

(
Rt
λz,

λ · t
|λ|

)
, (z, t) ∈ R2n × Rm,

is a surjective homomorphism of Lie groups. In particular, G/kerαλ is
isomorphic to Hn.

In fact,

kerαλ =

{
(z, t) ∈ G :

(
Rt
λz,

λ · t
|λ|

)
= (0, 0)

}
= {(0, t) ∈ G : t ⊥ λ}.

Let λ ∈ Rm∗. Then we define the irreducible and unitary representation
πλ of G on L2(Rn) by

πλ = ρ|λ| ◦ αλ.
It is then obvious that πλ(0, t) = eiλ·tI. In fact, any irreducible and unitary
representation of G with central character eiλ·t factors through the kernel
of αλ and hence by the Stone-von Neumann theorem must be equivalent
to πλ. The representation πλ of G on L2(Rn) is called the Schrödinger rep-
resentation. So, for λ ∈ Rm∗, the Schrödinger representation πλ of G on
L2(Rn) is given by

(πλ(z, t)h)(x) =

(
ρ|λ|

(
Rt
λz,

λ · t
|λ|

)
h

)
(x), x ∈ Rn,

for all h in L2(Rn).
For λ ∈ Rm∗, let

Rλ = [Rλ,1, . . . , Rλ,2n],

where Rλ,j is a 2n× 1 matrix for j = 1, . . . , 2n. Then

Rt
λ =


Rt
λ,1

...

Rt
λ,2n

 .
Let Rt

λ,jz = qλ,j, j = 1, . . . , n, and Rt
λ,jz = pλ,j−n, j = n + 1, . . . , 2n. Then

for all h in L2(Rn)

(πλ(z, t)h)(x) = ei|λ|(
λ·t
|λ|+qλ·x+ 1

2
qλ·pλ)h(x+ pλ), x ∈ Rn,
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where qλ = (qλ,1, . . . , qλ,n) and pλ = (pλ,1, . . . , pλ,n).
The set {πλ : λ ∈ Rm∗} of irreducible and unitary representations of

the H-type group G on L2(Rn) can best be identified with the punctured
Euclidean space Rm∗.

Let f ∈ L1(G) and let λ ∈ Rm∗. Then we define the Fourier transform
f̂(λ) of f at λ to be the bounded linear operator on L2(Rn) by

f̂(λ)ϕ =

∫
Rm

∫
R2n

f(z, t)πλ(z, t)ϕdz dt, ϕ ∈ L2(Rn).

We have the fact that if f ∈ L2(G), then for all λ ∈ Rm∗, f̂(λ) is a Hilbert–
Schmidt operator on L2(Rn) and we have the Plancherel formula to the
effect that

‖f‖2
L2(G) =

∫
Rm

‖f̂(λ)‖2
S2 dµ(λ), f ∈ L2(G),

where ‖ ‖S2 denotes the Hilbert–Schmidt norm and dµ is the Plancherel
measure on G given by

dµ(λ) = c|λ|ndλ.
and c is a suitable normalizing constant. The Fourier inversion formula is
given by

f(z, t) =

∫
Rm

tr(πµ(z, t)∗f̂(λ)) dµ(λ), (z, t) ∈ G,

for all Schwartz functions on G, where πµ(z, t)∗ is the adjoint of πµ(z, t).
Now, let σ : G × Rm∗ → B(L2(Rn)) be an operator-valued symbol or

simply a symbol. Then we define the pseudo-differential operator Tσ with
symbol σ by

(Tσf)(z, t) =

∫
Rm

tr(πµ(z, u)∗σ(z, t, λ)f̂(λ)) dµ(λ), (z, t) ∈ G,

for all f ∈ S(G).

4 Weyl Transforms for H-Type Groups

Let q and p be in Rn, and let λ ∈ Rm∗. Then for every measurable function
f on Rn, the function πλ(q, p)f on Rn is defined by

(πλ(q, p)f)(x) = ei|λ|(qλ·x+(qλ·pλ/2))f(x+ pλ), x ∈ Rn,
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where qλ = (qλ,1, . . . , qλ,n) and pλ = (pλ,1, . . . , pλ,n). It is clear that πλ(q, p) :
L2(Rn)→ L2(Rn) is a unitary operator for all q and p in Rn.

Let f and g be in L2(Rn). Then we define the function Vλ(f, g) on
R
n × Rn by

Vλ(f, g)(q, p) = (2π)−n/2(πλ(q, p)f, g)L2(Rn).

We call Vλ(f, g) the λ-Fourier–Wigner transform of f and g and the λ-
Wigner transform Wλ(f, g) of f and g is defined by

Wλ(f, g) = Vλ(f, g)∧,

where Vλ(f, g)∧ is the Fourier transform of Vλ(f, g).
Let σ be a function in the Schwartz space S(Rn×Rn). Then for λ ∈ Rm∗,

we define the λ-Weyl transform with symbol σ to be the bounded linear
operator W λ

σ : L2(Rn)→ L2(Rn) given by

(W λ
σ f, g)L2(Rn) = (2π)−n/2

∫
Rn

∫
Rn

σ(x, ξ)Wλ(f, g)(x, ξ) dx dξ

for all f and g in L2(Rn). Using the adjoint formula in Fourier analysis, we
get

(W λ
σ f, g)L2(Rn) = (2π)−n/2

∫
Rn

∫
Rn

σ̂(q, p)Vλ(f, g)(q, p) dq dp

for all f and g in L2(Rn). We can also write formally

W λ
σ = (2π)−n

∫
Rn

∫
Rn

σ̂(q, p)πλ(q, p) dq dp

= (2π)−n
∫
Rn

∫
Rn

σ̂(q, p)πλ(z) dq dp

= (2π)−n
∫
Rn

∫
Rn

σ̂(z)ρ|λ|(R
t
λz) dq dp

= (2π)−n
∫
Rn

∫
Rn

σ̂(Rλz)ρ|λ|(z) dq dp.

Since
σ̂(Rλz) = (σ ◦Rλ)

∧(z), z ∈ Cn,

it follows that
W λ
σ = W

|λ|
σ◦Rλ .
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So, for any unit vector u in Rm∗,

W u
σ = Wσ◦Ru ,

which is the classical Weyl transform in [6].

5 The Main Result

We prove in this section that the Fourier transform on a H-type group is in
fact a classical Weyl transform on Rn.

Theorem 5.1 Let f ∈ L1(G). Then for all λ ∈ Rm∗,

f̂(λ) = (2π)(2n+m)/2WD1
|λ|((f

λ)∨)◦Rλ ,

where D1
|λ| is the dilation operator defined by

(D1
|λ|w)(q, p) = w(|λ|q, p), q, p ∈ Rn,

for all measurable functions w on Rn×Rn, and fλ is the function on Rn×Rn
defined by

fλ(z) = (2π)−m/2
∫
Rm

eiλ·tf(z, t) dt, z ∈ Cn,

and h∨ denotes the inverse Fourier transform of the function h on Cn.

Proof Let ϕ ∈ S(Rn). Then for almost all λ in Rm∗,

(f̂(λ)ϕ)(x)

=

∫
Rm

∫
Cn

f(z, t)(πλ(z, t)ϕ)(x) dz du

=

∫
Rm

∫
Cn

f(z, t)eit·λ(ρ|λ|(R
t
λz)ϕ)(x) dz dt

= (2π)m/2
∫
Cn

fλ(Rλz)(ρ|λ|(z)ϕ)(x) dz

= (2π)m/2
∫
Cn

((fλ)∨)∧(Rλ(q, p))e
i|λ|(q·x+(q·p/2))ϕ(x+ p) dq dp.

Then

(f̂(λ)ϕ)(x) = (2π)m/2
∫
Cn

(D1
|λ|((f

λ)∨)∧(Rλ(q, p))(ρ(q, p)ϕ)(x) dq dp.
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Thus, for all λ ∈ Rm∗,

f̂(λ) = (2π)(2n+m)/2WD1
|λ|((f

λ)∨)◦Rλ .

�
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