Weyl Transforms for H-Type Groups^{*}

Aparajita Dasgupta

École Polytechnique Fédérale de Lausanne, Mathematics Building, Section 8, CH-1015, Lausanne, Switzerland e-mail: aparajita.dasgupta@epfl.ch

M. W. Wong

Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada e-mail: mwwong@mathstat.yorku.ca

Abstract Weyl transforms for H-type groups are introduced and shown to be the classical Weyl transforms on \mathbb{R}^n .

Mathematics Subject Classification: Primary: 47G30

Keywords: Heisenberg group, H-type group, Stone–von Neumann theorem, Fourier transform, Fourier inversion formula, λ -Weyl transforms, $|\lambda|$ -Weyl transforms, classical Weyl transforms, pseudo-differential operators, operator-valued symbols

1 Introduction

In [8] among others, pseudo-differential operators on \mathbb{R}^n are built on the Fourier inversion formula for the Fourier transform on \mathbb{R}^n . The Fourier transform on the Heisenberg group is defined in terms of the Schrödinger

^{*}This research has been supported by the Natural Sciences and Engineering Research Council of Canada.

representations of the Heisenberg group on $L^2(\mathbb{R}^n)$ and the Fourier inversion formula for the Fourier transform on the Heisenberg group can then be used to define pseudo-differential operators with operator-valued symbols on the Heisenberg group. A key technique in studying pseudo-differential operators on the Heisenberg group in [2] is to express the Fourier transform on the Heisenberg group in terms of Weyl transforms on \mathbb{R}^n , which has been studied extensively in [6]. The aim of this paper is to look at the Fourier transform on H-type groups based on the Schrödinger representations of H-type groups on $L^2(\mathbb{R}^n)$ explained in the appendix of [4] and prove that Fourier transforms on H-type groups are Weyl transforms on \mathbb{R}^n . As such, the results in [2] can then be formulated *verbatim* on H-type groups.

For the sake of completeness and transparency, we first recall in Section 2 how to set up pseudo-differential operators on the Heisenberg group. H-type groups and their Schrödinger representations on $L^2(\mathbb{R}^n)$ are recapitulated without proofs in Section 3. λ -Weyl transforms for H-type groups are introduced in Section 4 and proved to be $|\lambda|$ -Weyl transforms for the Heisenberg group. That the Fourier transform on a H-type group is a classical Weyl transform on \mathbb{R}^n is proved in Section 5.

2 The Heisenberg Group

If we identify $\mathbb{R}^n \times \mathbb{R}^n$ with \mathbb{C}^n via the obvious identification

$$\mathbb{R}^n \times \mathbb{R}^n \ni (q, p) \leftrightarrow q + ip \in \mathbb{C}^n,$$

and we let

$$\mathbb{H}^n = \mathbb{C}^n \times \mathbb{R}$$

then \mathbb{H}^n becomes a noncommutative group when equipped with the multiplication \cdot given by

$$(z,t) \cdot (w,s) = \left(z+w,t+s+\frac{1}{2}\omega(z,w)\right), \quad (z,t), (w,s) \in \mathbb{H}^n,$$

where $\omega(z, w)$ is the symplectic form of

$$z = (z_1, \ldots, z_n)$$

and

$$w = (w_1, \ldots, w_n)$$

defined by

$$\omega(z, w) = \operatorname{Im}(z \cdot \overline{w}) = \operatorname{Im}\sum_{j=1}^{n} z_j \overline{w_j}.$$

In fact, \mathbb{H}^n is a unimodular Lie group on which the Haar measure is just the ordinary Lebesgue measure dz dt.

One of the most fundamental problems in the analysis on a Lie group is the classification of all irreducible and unitary representations of the Lie group. To that end for the Heisenberg group \mathbb{H}^n , we let $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ and let $U(L^2(\mathbb{R}^n))$ be the group of all unitary operators on $L^2(\mathbb{R}^n)$. For all $\lambda \in \mathbb{R}^*$, we let $\rho_{\lambda} : \mathbb{H}^n \to U(L^2(\mathbb{R}^n))$ be the mapping defined by

$$(\rho_{\lambda}(z,t)f)(x) = e^{i\lambda t} e^{\lambda(iq \cdot x + (iq \cdot p/2))} f(x+p), \quad x \in \mathbb{R}^n,$$

for all f in $L^2(\mathbb{R}^n)$. Then it can be proved that $\rho_{\lambda} : \mathbb{H}^n \to U(L^2(\mathbb{R}^n))$ is an irreducible and unitary representation of \mathbb{H}^n on $L^2(\mathbb{R}^n)$. In fact, the Stonevon Neumann theorem says that these are essentially all the irreducible and unitary representations of \mathbb{H}^n on $L^2(\mathbb{R}^n)$. More precisely, we have the following Stone-von Neumann theorem.

Theorem 2.1 If $\rho : \mathbb{H}^n \to U(X)$ is an irreducible and unitary representation of \mathbb{H}^1 on X, where U(X) is the group of all unitary operators on an infinite-dimensional, separable and complex Hilbert space X, such that there exists a real number λ in \mathbb{R}^* for which

$$\rho(0,t) = e^{i\lambda t}I, \quad t \in \mathbb{R},$$

where I is the identity operator on X, then ρ is unitarily equivalent to ρ_{λ} in the sense that there exists a bijective isometry $U: X \to L^2(\mathbb{R}^n)$ such that

$$\rho(z,t) = U^{-1}\rho_{\lambda}(z,t)U, \quad (z,t) \in \mathbb{H}^n.$$

Henceforth, the identification of $\{\rho_{\lambda} : \lambda \in \mathbb{R}^*\}$ with \mathbb{R}^* will be used. Now, let $f \in L^1(\mathbb{H}^n)$ and let $\lambda \in \mathbb{R}^*$. Then we define the Fourier transform $\hat{f}(\lambda)$ of f at λ to be the bounded linear operator from $L^2(\mathbb{R}^n)$ into $L^2(\mathbb{R}^n)$ given by

$$\hat{f}(\lambda)\varphi = \int_{-\infty}^{\infty} \int_{\mathbb{C}^n} f(z,t)\rho_{\lambda}(z,t)\varphi \,dz \,dt$$

for all $\varphi \in L^2(\mathbb{R}^n)$. In fact, the following result is valid.

Theorem 2.2 Let $f \in L^2(\mathbb{H}^n)$ and let $\lambda \in \mathbb{R}^*$. Then $\hat{f}(\lambda) : L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ is a Hilbert–Schmidt operator. In fact,

$$\int_{-\infty}^{\infty} \|\hat{f}(\lambda)\|_{S_2}^2 d\mu(\lambda) = \|f\|_{L^2(\mathbb{H}^n)}^2,$$

where $\| \|_{S_2}$ stands for the norm in the Hilbert space S_2 of all Hilbert-Schmidt operators on $L^2(\mathbb{R}^n)$ and $d\mu(\lambda) = (2\pi)^{-(n+1)} |\lambda|^n d\lambda$.

Remark 2.3 The formula in Theorem 2.2 is known as Plancherel's formula and the measure $d\mu(\lambda)$ is called the Plancherel measure on the Heisenberg group.

The starting point for the analysis of pseudo-differential operators on the Heisenberg group in [2] is the following Fourier inversion formula for the Fourier transform on the Heisenberg group.

Theorem 2.4 Let f be a function in the Schwartz space $\mathcal{S}(\mathbb{H}^n)$ on \mathbb{H}^n . Then for all $(z,t) \in \mathbb{H}^n$,

$$f(z,t) = \int_{-\infty}^{\infty} \operatorname{tr}(\rho_{\lambda}(z,t)^* \hat{f}(\lambda)) d\mu(\lambda),$$

where $\rho_{\lambda}(z,t)^*$ is the adjoint of $\rho_{\lambda}(z,t)$.

The theory of the Heisenberg group hitherto described can be found in many places, e.g., in [5, 7].

Let $B(L^2(\mathbb{R}^n))$ be the C^* -algebra of all bounded linear operators on $L^2(\mathbb{R}^n)$. Then we call a mapping $\sigma : \mathbb{H}^n \times \mathbb{R}^* \to B(L^2(\mathbb{R}^n))$ an operatorvalued symbol or simply a symbol. Given a symbol $\sigma : \mathbb{H}^n \times \mathbb{R}^* \to B(L^2(\mathbb{R}^n))$, we define the pseudo-differential operator $T_{\sigma} : L^2(\mathbb{H}^n) \to L^2(\mathbb{H}^n)$ by

$$(T_{\sigma}f)(z,t) = \int_{-\infty}^{\infty} \operatorname{tr}(\rho_{\lambda}^{*}(z,t)\sigma(z,t,\lambda)\hat{f}(\lambda)) \, d\mu(\lambda), \quad (z,t) \in \mathbb{H}^{n},$$

for all f in $\mathcal{S}(\mathbb{H}^n)$.

Results closely related to the paper [2] and the results in this paper are in [3].

3 H-Type Groups

Let \mathfrak{g} be a (2n+m)-dimensional real Lie algebra equipped with a Lie bracket $[,]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$. Suppose that there exists an inner product (,) in \mathfrak{g} such that

$$[\mathfrak{z}^{\perp},\mathfrak{z}^{\perp}]=\mathfrak{z},$$

where \mathfrak{z}^{\perp} is the orthogonal complement of \mathfrak{z} , and for every nonzero λ in \mathfrak{z} , the mapping $J_{\lambda} : \mathfrak{z}^{\perp} \to \mathfrak{z}^{\perp}$ defined by

$$(J_{\lambda}V,W) = (\lambda, [V,W]), \quad V,W \in \mathfrak{z}^{\perp},$$

is orthogonal whenever $(\lambda, \lambda) = 1$. Then we call \mathfrak{g} a H-type Lie algebra. It is easy to check that for every nonzero element λ in \mathfrak{z} ,

$$J_{\lambda}^2 = -I.$$

A H-type group \mathbb{G} is a connected and simply connected Lie group \mathbb{G} such that the corresponding Lie algebra \mathfrak{g} is a H-type Lie algebra.

It can be proved [1] that \mathbb{G} is a H-type group if and only if \mathbb{G} is isomorphic to $\mathbb{R}^{2n} \times \mathbb{R}^m$ equipped with the group law \cdot given by

$$(z,t)\cdot(w,s) = \left(z+w,t+s+\frac{1}{2}\omega(z,w)\right), \quad (z,t), (w,s) \in \mathbb{G},$$

where $\omega(z, w)$ is a point in \mathbb{R}^m of which the j^{th} entry is $(U^{(j)}z, w)$ and $U^{(1)}, \ldots, U^{(m)}$ are $2n \times 2n$ skew-symmetric and orthogonal matrices such that

$$U^{(j)}U^{(k)} + U^{(k)}U^{(j)} = 0$$

for all $j, k = 1, \ldots, m$ with $j \neq k$.

Let $\mathbb{R}^{m*} = \mathbb{R}^m \setminus \{0\}$. Then for $\lambda \in \mathbb{R}^{m*}$, let $R_\lambda \in \mathcal{O}(2n, \mathbb{R})$ be such that

$$J_{\lambda} = R_{\lambda} J R_{\lambda}^{t},$$

where J is the symplectic matrix of order $2n \times 2n$ given by

$$J = \left[\begin{array}{cc} 0 & -I_n \\ I_n & 0 \end{array} \right].$$

Here I_n denotes the identity matrix of order n and R_{λ}^t is the transpose of R_{λ} . The following lemma in [4] establishes a useful link between the representations of \mathbb{G} and those of the Heisenberg group \mathbb{H}^n . **Lemma 3.1** The mapping $\alpha_{\lambda} : \mathbb{G} \to \mathbb{H}^n$ given by

$$\alpha_{\lambda}(z,t) = \left(R_{\lambda}^{t} z, \frac{\lambda \cdot t}{|\lambda|} \right), \quad (z,t) \in \mathbb{R}^{2n} \times \mathbb{R}^{m},$$

is a surjective homomorphism of Lie groups. In particular, $\mathbb{G}/\ker \alpha_{\lambda}$ is isomorphic to \mathbb{H}^n .

In fact,

$$\ker \alpha_{\lambda} = \left\{ (z,t) \in \mathbb{G} : \left(R_{\lambda}^{t} z, \frac{\lambda \cdot t}{|\lambda|} \right) = (0,0) \right\} = \{ (0,t) \in \mathbb{G} : t \perp \lambda \}.$$

Let $\lambda \in \mathbb{R}^{m*}$. Then we define the irreducible and unitary representation π_{λ} of \mathbb{G} on $L^2(\mathbb{R}^n)$ by

$$\pi_{\lambda} = \rho_{|\lambda|} \circ \alpha_{\lambda}.$$

It is then obvious that $\pi_{\lambda}(0, t) = e^{i\lambda \cdot t}I$. In fact, any irreducible and unitary representation of \mathbb{G} with central character $e^{i\lambda \cdot t}$ factors through the kernel of α_{λ} and hence by the Stone-von Neumann theorem must be equivalent to π_{λ} . The representation π_{λ} of \mathbb{G} on $L^2(\mathbb{R}^n)$ is called the Schrödinger representation. So, for $\lambda \in \mathbb{R}^{m*}$, the Schrödinger representation π_{λ} of \mathbb{G} on $L^2(\mathbb{R}^n)$ is given by

$$(\pi_{\lambda}(z,t)h)(x) = \left(\rho_{|\lambda|}\left(R_{\lambda}^{t}z, \frac{\lambda \cdot t}{|\lambda|}\right)h\right)(x), \quad x \in \mathbb{R}^{n},$$

for all h in $L^2(\mathbb{R}^n)$.

For $\lambda \in \mathbb{R}^{m*}$, let

$$R_{\lambda} = [R_{\lambda,1}, \ldots, R_{\lambda,2n}],$$

where $R_{\lambda,j}$ is a $2n \times 1$ matrix for $j = 1, \ldots, 2n$. Then

$$R_{\lambda}^{t} = \left[\begin{array}{c} R_{\lambda,1}^{t} \\ \vdots \\ R_{\lambda,2n}^{t} \end{array} \right].$$

Let $R_{\lambda,j}^t z = q_{\lambda,j}, j = 1, \ldots, n$, and $R_{\lambda,j}^t z = p_{\lambda,j-n}, j = n+1, \ldots, 2n$. Then for all h in $L^2(\mathbb{R}^n)$

$$(\pi_{\lambda}(z,t)h)(x) = e^{i|\lambda| \left(\frac{\lambda \cdot t}{|\lambda|} + q_{\lambda} \cdot x + \frac{1}{2}q_{\lambda} \cdot p_{\lambda}\right)} h(x+p_{\lambda}), \quad x \in \mathbb{R}^{n},$$

where $q_{\lambda} = (q_{\lambda,1}, \dots, q_{\lambda,n})$ and $p_{\lambda} = (p_{\lambda,1}, \dots, p_{\lambda,n})$.

The set $\{\pi_{\lambda} : \lambda \in \mathbb{R}^{m*}\}$ of irreducible and unitary representations of the H-type group \mathbb{G} on $L^2(\mathbb{R}^n)$ can best be identified with the *punctured* Euclidean space \mathbb{R}^{m*} .

Let $f \in L^1(\mathbb{G})$ and let $\lambda \in \mathbb{R}^{m*}$. Then we define the Fourier transform $\hat{f}(\lambda)$ of f at λ to be the bounded linear operator on $L^2(\mathbb{R}^n)$ by

$$\hat{f}(\lambda)\varphi = \int_{\mathbb{R}^m} \int_{\mathbb{R}^{2n}} f(z,t)\pi_{\lambda}(z,t)\varphi \, dz \, dt, \quad \varphi \in L^2(\mathbb{R}^n).$$

We have the fact that if $f \in L^2(\mathbb{G})$, then for all $\lambda \in \mathbb{R}^{m*}$, $\hat{f}(\lambda)$ is a Hilbert– Schmidt operator on $L^2(\mathbb{R}^n)$ and we have the Plancherel formula to the effect that

$$\|f\|_{L^{2}(\mathbb{G})}^{2} = \int_{\mathbb{R}^{m}} \|\hat{f}(\lambda)\|_{S^{2}}^{2} d\mu(\lambda), \quad f \in L^{2}(\mathbb{G}).$$

where $\| \|_{S^2}$ denotes the Hilbert–Schmidt norm and $d\mu$ is the Plancherel measure on \mathbb{G} given by

$$d\mu(\lambda) = c|\lambda|^n d\lambda.$$

and c is a suitable normalizing constant. The Fourier inversion formula is given by

$$f(z,t) = \int_{\mathbb{R}^m} \operatorname{tr}(\pi_{\mu}(z,t)^* \hat{f}(\lambda)) \, d\mu(\lambda), \quad (z,t) \in \mathbb{G},$$

for all Schwartz functions on \mathbb{G} , where $\pi_{\mu}(z,t)^*$ is the adjoint of $\pi_{\mu}(z,t)$.

Now, let $\sigma : \mathbb{G} \times \mathbb{R}^{m^*} \to B(L^2(\mathbb{R}^n))$ be an operator-valued symbol or simply a symbol. Then we define the pseudo-differential operator T_{σ} with symbol σ by

$$(T_{\sigma}f)(z,t) = \int_{\mathbb{R}^m} \operatorname{tr}(\pi_{\mu}(z,u)^* \sigma(z,t,\lambda) \hat{f}(\lambda)) \, d\mu(\lambda), \quad (z,t) \in \mathbb{G},$$

for all $f \in \mathcal{S}(\mathbb{G})$.

4 Weyl Transforms for H-Type Groups

Let q and p be in \mathbb{R}^n , and let $\lambda \in \mathbb{R}^{m*}$. Then for every measurable function f on \mathbb{R}^n , the function $\pi_{\lambda}(q, p)f$ on \mathbb{R}^n is defined by

$$(\pi_{\lambda}(q,p)f)(x) = e^{i|\lambda|(q_{\lambda} \cdot x + (q_{\lambda} \cdot p_{\lambda}/2))} f(x+p_{\lambda}), \quad x \in \mathbb{R}^{n},$$

where $q_{\lambda} = (q_{\lambda,1}, \ldots, q_{\lambda,n})$ and $p_{\lambda} = (p_{\lambda,1}, \ldots, p_{\lambda,n})$. It is clear that $\pi_{\lambda}(q, p) : L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ is a unitary operator for all q and p in \mathbb{R}^n .

Let f and g be in $L^2(\mathbb{R}^n)$. Then we define the function $V_{\lambda}(f,g)$ on $\mathbb{R}^n \times \mathbb{R}^n$ by

$$V_{\lambda}(f,g)(q,p) = (2\pi)^{-n/2} (\pi_{\lambda}(q,p)f,g)_{L^{2}(\mathbb{R}^{n})}.$$

We call $V_{\lambda}(f,g)$ the λ -Fourier–Wigner transform of f and g and the λ -Wigner transform $W_{\lambda}(f,g)$ of f and g is defined by

$$W_{\lambda}(f,g) = V_{\lambda}(f,g)^{\wedge},$$

where $V_{\lambda}(f,g)^{\wedge}$ is the Fourier transform of $V_{\lambda}(f,g)$.

Let σ be a function in the Schwartz space $\mathcal{S}(\mathbb{R}^n \times \mathbb{R}^n)$. Then for $\lambda \in \mathbb{R}^{m*}$, we define the λ -Weyl transform with symbol σ to be the bounded linear operator $W^{\lambda}_{\sigma} : L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ given by

$$(W^{\lambda}_{\sigma}f,g)_{L^{2}(\mathbb{R}^{n})} = (2\pi)^{-n/2} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \sigma(x,\xi) W_{\lambda}(f,g)(x,\xi) \, dx \, d\xi$$

for all f and g in $L^2(\mathbb{R}^n)$. Using the adjoint formula in Fourier analysis, we get

$$(W^{\lambda}_{\sigma}f,g)_{L^{2}(\mathbb{R}^{n})} = (2\pi)^{-n/2} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \hat{\sigma}(q,p) V_{\lambda}(f,g)(q,p) \, dq \, dp$$

for all f and g in $L^2(\mathbb{R}^n)$. We can also write formally

$$W^{\lambda}_{\sigma} = (2\pi)^{-n} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \hat{\sigma}(q, p) \pi_{\lambda}(q, p) \, dq \, dp$$

$$= (2\pi)^{-n} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \hat{\sigma}(q, p) \pi_{\lambda}(z) \, dq \, dp$$

$$= (2\pi)^{-n} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \hat{\sigma}(z) \rho_{|\lambda|}(R^{t}_{\lambda}z) \, dq \, dp$$

$$= (2\pi)^{-n} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \hat{\sigma}(R_{\lambda}z) \rho_{|\lambda|}(z) \, dq \, dp.$$

Since

$$\hat{\sigma}(R_{\lambda}z) = (\sigma \circ R_{\lambda})^{\wedge}(z), \quad z \in \mathbb{C}^n,$$

it follows that

$$W^{\lambda}_{\sigma} = W^{|\lambda|}_{\sigma \circ R_{\lambda}}.$$

So, for any unit vector u in \mathbb{R}^{m*} ,

$$W^u_{\sigma} = W_{\sigma \circ R_u},$$

which is the classical Weyl transform in [6].

5 The Main Result

We prove in this section that the Fourier transform on a H-type group is in fact a classical Weyl transform on \mathbb{R}^n .

Theorem 5.1 Let $f \in L^1(\mathbb{G})$. Then for all $\lambda \in \mathbb{R}^{m*}$,

$$\hat{f}(\lambda) = (2\pi)^{(2n+m)/2} W_{D^1_{|\lambda|}((f^{\lambda})^{\vee}) \circ R_{\lambda}}$$

where $D^1_{|\lambda|}$ is the dilation operator defined by

$$(D^1_{|\lambda|}w)(q,p) = w(|\lambda|q,p), \quad q,p \in \mathbb{R}^n,$$

for all measurable functions w on $\mathbb{R}^n \times \mathbb{R}^n$, and f^{λ} is the function on $\mathbb{R}^n \times \mathbb{R}^n$ defined by

$$f^{\lambda}(z) = (2\pi)^{-m/2} \int_{\mathbb{R}^m} e^{i\lambda \cdot t} f(z,t) \, dt, \quad z \in \mathbb{C}^n,$$

and h^{\vee} denotes the inverse Fourier transform of the function h on \mathbb{C}^n .

Proof Let $\varphi \in \mathcal{S}(\mathbb{R}^n)$. Then for almost all λ in \mathbb{R}^{m*} ,

$$\begin{aligned} &(\hat{f}(\lambda)\varphi)(x) \\ &= \int_{\mathbb{R}^m} \int_{\mathbb{C}^n} f(z,t) (\pi_{\lambda}(z,t)\varphi)(x) \, dz \, du \\ &= \int_{\mathbb{R}^m} \int_{\mathbb{C}^n} f(z,t) e^{it \cdot \lambda} (\rho_{|\lambda|}(R_{\lambda}^t z)\varphi)(x) \, dz \, dt \\ &= (2\pi)^{m/2} \int_{\mathbb{C}^n} f^{\lambda}(R_{\lambda} z) (\rho_{|\lambda|}(z)\varphi)(x) \, dz \\ &= (2\pi)^{m/2} \int_{\mathbb{C}^n} ((f^{\lambda})^{\vee})^{\wedge} (R_{\lambda}(q,p)) e^{i|\lambda|(q \cdot x + (q \cdot p/2))} \varphi(x+p) \, dq \, dp. \end{aligned}$$

Then

$$(\hat{f}(\lambda)\varphi)(x) = (2\pi)^{m/2} \int_{\mathbb{C}^n} (D^1_{|\lambda|}((f^{\lambda})^{\vee})^{\wedge}(R_{\lambda}(q,p))(\rho(q,p)\varphi)(x) \, dq \, dp.$$

Thus, for all $\lambda \in \mathbb{R}^{m*}$,

$$\hat{f}(\lambda) = (2\pi)^{(2n+m)/2} W_{D^1_{|\lambda|}((f^{\lambda})^{\vee}) \circ R_{\lambda}}.$$

References

- [1] A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, *Stratified Lie Groups and Potential Theory for their Sub-Laplacians*, Springer, 2007.
- [2] A. Dasgupta and M. W. Wong, Hilbert–Schmidt and trace class pseudo-differential operators on the Heisenberg group, J. Pseudo-Differ. Oper. Appl. 4 (2013), 345–359.
- [3] X. Duan and M. W. Wong, Pseudo-differential operators for Weyl transforms, University POLITEHNICA of Bucharest Sci. Bull. Series A: Applied Mathematics and Physics 75 (2013), 3–12.
- [4] D. Müller, Sharp L^p-estimates for the wave equation on Heisenberg type groups, *unpublished manuscript*.
- [5] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, 1993.
- [6] M. W. Wong, Weyl Transforms, Springer, 1998.
- [7] M. W. Wong, Partial Differential Equations: Topics in Fourier Analysis, CRC Press, 2014.
- [8] M. W. Wong, An Introduction to Pseudo-Differential Operators, Second Edition, World Scientific, 2014.