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1 Introduction

Nuclear operators on Banach spaces as generalizations of trace class opera-
tors can be traced at least to Grothendieck [10, 11]. First results on nuclear
integral operators and pseudo-differential operators on Lp spaces in simple
settings like the unit circle centered at the origin and the discrete group of
all integers, 1 ≤ p <∞, can be found in [2, 3, 6].

Let S1 be the unit circle centered at the origin and let Z be the set of all
integers. For every measurable function σ on S1 × Z and every measurable
function f on S1, we define the function Tσf on S1 formally by

(Tσf)(θ) =
∑
n∈Z

einθσ(θ, n)f̂(n), θ ∈ [−π, π],

where f̂(n) is the Fourier transform of f given by

f̂(n) =
1

2π

∫ π

−π
e−inθf(θ) dθ, n ∈ Z.

We call Tσ the pseudo-differential operator on S1 with symbol σ.
Conditions on the symbols σ to insure the boundedness, compactness

and self-adjointness of the corresponding pseudo-differential operators Tσ
have been given in [1, 7, 8, 12, 13, 14, 15, 17]. In addition, Fredholmness
and nuclearity of pseudo-differential operators Tσ under suitable conditions
on the symbols σ are investigated in [2, 3]. These results can be extended
easily from the unit circle S1 to the n-torus Tn given by

Tn = S1 × · · · × S1︸ ︷︷ ︸
n times

.

Extensions to compact Lie groups and to compact manifolds can be found,
for instance, in, respectively, [5] and [4] In a nutshell, the results hitherto
cited are on sufficient conditions on the symbols σ to prove mapping prop-
erties of the corresponding pseudo-differential operators Tσ. To the best of
our knowledge, very few results on necessary and sufficient conditions on
the symbols σ for the corresponding pseudo-differential operators to have
the desired mapping properties exist. A notable exception is the paper [12]
by Molahajloo on compact pseudo-differential operators on S1.
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The aim of this paper is to present necessary and sufficient conditions
on the symbols σ for the corresponding pseudo-differential operators Tσ to
be nuclear from Lp1(S1) into Lp2(S1) for 1 ≤ p1, p2 < ∞. We also give
necessary and sufficient conditions on the symbols σ to guarantee that the
adjoints and products of pseudo-differential operators are nuclear.

We first give in Section 2 the definition of nuclear operators on Banach
spaces and the main tool [2, 3, 6] to be used in this paper. Then we give nec-
essary and sufficient conditions on the symbols σ so that the corresponding
pseudo-differential operators Tσ are nuclear from Lp1(S1) into Lp2(S1) for
1 ≤ p1, p2 < ∞. In Section 3 are given necessary and sufficient conditions
on the symbols σ for which the adjoints of pseudo-differential operators Tσ
are nuclear. The nuclearity of products of nuclear operators is given in
Section 4.

All results in this paper can be routinely extended from the unit circle
S1 to the n-torus Tn. It is worth pointing out that characterizing trace class
pseudo-differential operators on L2(Rn) can be found in [16].

2 Nuclearity on Lp(S1)

Let X and Y be complex Banach spaces and let T : X → Y be a bouned
linear operator. Suppose that we can find sequences {x′n}∞n=1 in the dual
space X ′ of X and {yn}∞n=1 in Y such that

∞∑
n=1

‖x′n‖X′‖yn‖Y <∞

and

Tx =
∞∑
n=1

x′n(x)yn, x ∈ X.

Then we call T : X → Y a nuclear operator and its trace tr(T ) is defined
by

tr(T ) =
∞∑
n=1

x′n(yn).

It can be proved that the definition of a nuclear operator and the definition
of the trace of a nuclear operator are independent of the choices of the
sequences {x′n}∞n=1 and {yn}∞n=1. Details can be found in [9].
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For Lp spaces, the main tool is the following result in [2, 3, 6].

Theorem 2.1 Let (X1, µ1) and (X2, µ2) be σ-finite measure spaces. A
bounded linear operator T : Lp1(X1, µ1) → Lp2(X2, µ2), 1 ≤ p1, p2 < ∞,
is nuclear if and only if there exist sequences {gn}∞n=1 in Lp

′
1((X1, µ1) and

{hn}∞n=1 in Lp2(X2, µ2) such that for all f ∈ Lp1(X1, µ1),

(Tf)(x) =

∫
X1

(
∞∑
n=1

hn(x)gn(y)

)
f(y) dµ1(y), x ∈ X2,

and
∞∑
n=1

‖gn‖Lp′1 (X1,µ1)
‖hn‖Lp2 (X2,µ2) <∞.

The functin K on X2 ×X1 defined by

K(x, y) =
∞∑
n=1

hn(x)gn(y), x ∈ X2, y ∈ X1,

is known as the kernel of the nuclear operator T : Lp1(X1, µ1)→ Lp2(X2, µ2).
If X1 = X2 = X, p1 = p2 = p and µ1 = µ2 = µ is a σ-finite measure, then
for almost all x ∈ X,∫

X

|K(x, y)| dµ(y) ≤
∞∑
n=1

‖hn‖Lp(X,µ)‖gn‖Lp′ (X,µ).

The trace tr(T ) of T : Lp(X,µ)→ Lp(X,µ) is given by

tr(T ) =

∫
X

K(x, x) dµ(x).

We give in the following theorem a necessary and sufficent condition
on the symbol σ to make sure that the corresponding pseudo-differential
operator Tσ from Lp1(S1) into Lp2(S1) is nuclear for 1 ≤ p1, p2 <∞.

Theorem 2.2 Let σ be a measurable function on S1×Z. Then the pseudo-
differential operator Tσ : Lp1(S1)→ Lp2(S1) is nuclear for 1 ≤ p1, p2 <∞ if
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and only if there exist sequences {gk}∞k=1 in Lp
′
1(S1) and {hk}∞k=1 in Lp2(S1)

such that
∞∑

k=−∞

‖hk‖Lp2 (S1)‖gk‖Lp′1 (S1)
<∞

and

σ(θ, n) = 2πe−inθ
∞∑

k=−∞

hn(θ)ĝk(−n), (θ, n) ∈ S1 × Z.

Proof We only need to prove the necessity. Suppose that Tσ : Lp1(S1)→
Lp2(S1) is nuclear. By Theorem 2.1, there exist sequences {gk}∞k=1 in Lp

′
1(S1)

and {hk}∞k=1 in Lp2(S1) such that

∞∑
k=1

‖kk‖Lp2 (S1)‖gk‖Lp′1 (S1)
<∞

and for all f ∈ Lp1(S1),

(Tσf)(θ) =
∞∑

k=−∞

eikθσ(θ, k)f̂(k)

=

∫ π

−π

(
∞∑

k=−∞

hk(θ)gk(φ)

)
f(φ) dφ, θ ∈ [−π, π]. (2.1)

Now, for all n ∈ Z, we let en be the function on S1 defined by

en(θ) = einθ, θ ∈ [−π, π].

Since

ên(k) =
1

2π

∫ π

−π
e−ikθeinθdθ =

 0, k 6= n,

1, k = n.
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If we let f = en in (2.1), then we get

einθσ(θ, n) =

∫ π

−π

(
∞∑

k=−∞

hk(θ)gk(φ)

)
einφdφ

=
∞∑

k=−∞

hk(θ)

∫ π

−π
einφgk(φ) dφ

= 2π
∞∑

k=−∞

hk(θ)ĝk(−n), θ ∈ [−π, π].

Therefore

σ(θ, n) = 2πe−inθ
∞∑

k=−∞

hk(θ)ĝk(−n), (θ, n) ∈ S1 × Z.

Conversely, suppose that there exist sequences {gk}∞k=1 in Lp
′
1(S1) and {hk}∞k=1

in Lp2(S1) such that

∞∑
k=−∞

‖hk‖Lp2 (S1)‖gk‖Lp′1 (S1)
<∞

and

σ(θ, n) = 2πe−inθ
∞∑

k=−∞

hk(θ)ĝk(−n), (θ, n) ∈ S1 × Z.
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Then for all f ∈ Lp1(S1),

(Tσf)(θ) =
∞∑

n=−∞

einθσ(θ, n)f̂(n)

= 2π
∞∑

n=−∞

∞∑
k=−∞

hk(θ)ĝk(−n)f̂(n)

=
∞∑

n=−∞

(
∞∑

k=−∞

hk(θ)

∫ π

−π
einφgk(φ) dφ

)
f̂(n)

=

∫ π

−π

∞∑
n=−∞

einφf̂(n)
∞∑

k=−∞

hk(θ)gk(φ) dφ

=

∫ π

−π

(
∞∑

k=−∞

hk(θ)gk(φ)

)
f(φ) dφ, θ ∈ [−π, π].

2

Before we give an application of Theorem 2.2, we need another charac-
terization of nuclear operators from Lp1(S1) into Lp2(S1), 1 ≤ p1, p2 <∞..

Theorem 2.3 Let σ be a measurable function on S1×Z. Then the pseudo-
differential operator Tσ : Lp1(S1) → Lp2(S1) is nuclear if and only if there
exist sequences {gk}∞k=1 in Lp

′
1(S1) and {hk}∞k=1 in Lp2(S1) such that

∞∑
k=−∞

‖hk‖Lp2 (S1)‖gk‖Lp′ (S1) <∞

and

∞∑
n=−∞

ein(θ−φ)σ(θ, n) = 4π2

∞∑
k=−∞

hk(θ)gk(φ), θ, φ ∈ [−π, π].

Proof Suppose that Tσ : Lp1(S1)→ Lp2(S1) is nuclear. Then by Theorem
2.1, there exist sequences {gk}∞k=1 in Lp

′
1(S1) and {hk}∞k=1 in Lp2(S1) such

that
∞∑

k=−∞

‖hk‖Lp2 (S1)‖gk‖Lp′1 (S1)
<∞
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and

einθσ(θ, n) = 2π
∞∑

k=−∞

hk(θ)ĝk(−n), (θ, n) ∈ S1 × Z.

Thus, for all θ and φ in [−π, π],

∞∑
n=−∞

ein(θ−φ)σ(θ, n) = 2π
∞∑

n=−∞

e−inφ
∞∑

k=−∞

hk(θ)ĝk(−n)

= 2π

∫ π

−π

∞∑
n=−∞

ein(ω−φ)

∞∑
k=−∞

hk(θ)gk(ω) dω

= 4π2

∫ π

−π
δ(φ− ω)

(
∞∑

k=−∞

hk(θ)gk(ω)

)
dω

= 4π2

∞∑
k=−∞

hk(θ)gk(φ).

The converse is clear from Theorem 2.1. 2

An immediate consequence of Lemma 2.3 is the following result.

Theorem 2.4 Let Tσ : Lp(S1) → Lp(S1) be a nuclear operator, where 1 ≤
p <∞. Then

tr (Tσ) =
1

4π2

∫ π

−π

∞∑
n=−∞

σ(θ, n) dθ.

Proof By 2.1 andTheorem 2.3,

tr (Tσ) =

∫ π

−π

∞∑
k=−∞

hk(θ)gk(θ) dθ =
1

4π2

∫ π

−π

∞∑
n=−∞

σ(θ, n) dθ.

2

3 Adjoints

Let σ be a measurable function on S1 × Z such that the pseudo-differential
operator Tσ : Lp1(S1) → Lp2(S1) is nuclear. Then there exist sequences
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{gk}∞k=−∞ in Lp
′
1(S1) and {hk}∞−∞ in Lp2(S1) such that

∞∑
k=−∞

‖gk‖Lp′1 (S1)
‖hk‖Lp2 (S1) <∞

and

(Tσf)(θ) = 2πe−inθ
∞∑

k=−∞

hk(θ)ĝk(−n), θ ∈ [−π, π].

The following theorem tells us that the adjoint Tσ : Lp
′
2(S1) → Lp

′
1(S1)

is nuclear and its symbol σ∗ can also be expressed explicitly.

Theorem 3.1 Let σ be a measurable function on S1 × Z such that Tσ :
Lp1(S1)→ Lp2(S1) is nuclear. Let {gk}∞k=−∞ and {hk}∞k=−∞ be sequences in,
respectively, Lp

′
1(S1) and Lp2(S1) such that

∞∑
k=−∞

‖hk‖Lp2 (S1)‖gk‖Lp′1 (S1)
<∞

and

σ(θ, n) = 2πe−inθ
∞∑

k=−∞

hk(θ)ĝk(−n), (θ, n) ∈ S1 × Z.

Then T ∗σ : Lp
′
2(S1)→ Lp

′
1(S1) is nuclear and the symbol σ∗ of T ∗σ is given by

σ∗(θ, n) = 2πeinθ
∞∑

m=−∞

gm(θ)ĥm(−n), (θ, n) ∈ S1 × Z.

Proof For all functions u ∈ Lp(S1) and v ∈ Lp′(S1), 1 ≤ p ≤ ∞, we define
(u, v) by

(u, v) =

∫ π

−π
u(θ)v(θ) dθ.

Now, for all f ∈ Lp1(S1) and g ∈ Lp′2(S1),

(Tσf, g) = (f, Tσ∗g).
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So,∫ π

−π

∞∑
m=−∞

eimθσ(θ,m)f̂(m)g(θ) dθ =

∫ π

−π
f(θ)

∞∑
m=−∞

eimθσ∗(θ,m)ĝ(m) dθ.

Now, let f(θ) = einθ and g(θ) = eikθ for all θ ∈ [−π, π], where n and k are
integers. Then∫ π

−π
e−i(k−n)θσ(θ, n) dθ =

∫ π

−π
e−i(k−n)θσ∗(θ, k) dθ.

Thus,
σ̂(k − n, n) = σ̂∗(n− k, k), n, k ∈ Z.

Therefore

σ∗(θ, n) =
∞∑

k=−∞

ei(k−n)θσ̂∗(k − n, n)

=
∞∑

k=−∞

ei(k−n)θσ̂(n− k, k)

=
1

2π

∞∑
k=−∞

ei(k−n)θ

∫ π

−π
e−i(n−k)φσ(φ, k) dφ

=
∞∑

k=−∞

ei(k−n)θ

∫ π

−π
e−ikφ

∞∑
m=−∞

hm(φ)ĝm(−k) dφ

=
1

2π
e−inθ

∫ π

−π
e−inφ

∞∑
m=−∞

hm(φ)

∫ π

−π

∞∑
k=−∞

eik(ω−θ)gm(ω) dω dφ

= e−inθ
∫ π

−π
e−inφ

∞∑
m=−∞

hm(φ)

∫ π

−π
δ(θ − ω)gm(ω) dω dφ

= e−inθ
∫ π

−π
e−inφ

∞∑
m=∞

hm(φ)gm(θ) dφ

= 2πe−inθ
∞∑

m=−∞

gm(θ)ĥm(−n)

for all (θ, n) ∈ S1 × Z. This completes the proof. 2
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4 Products

The following theorem tells us in particular that the product of two nuclear
operators from Lp(S1) into Lp(S1), 1 ≤ p <∞, is nuclear.

Theorem 4.1 For 1 ≤ p < ∞, let Tσ : Lp(S1) → Lp(S1) be a nuclear op-
erator and let Tτ : Lp(S1)→ Lp(S1) be a bounded linear operator. Then the
pseudo-differential operator TτTσ : Lp(S1) → Lp(S1) is a nulcear operator.
Moreover, the symbol λ of TτTσ is given by

λ(θ, n) = 4π2e−inθ
∞∑

k=∞

uk(θ)ĝk(−n), (θ, n) ∈ S1 × Z,

where

uk(θ) =
∞∑

m=−∞

eimθτ(θ,m)ĥk(m) = (Tτhk)(θ), θ ∈ [−π.π].

Proof Let f ∈ Lp(S1). Then for all θ ∈ [−π.π],

(TτTσf)(θ)

=
∞∑

m=−∞

eimθτ(θ,m)(Tσf)∧(m)

=
1

2π

∞∑
m=−∞

eimθτ(θ,m)

∫ π

−π
e−imφ

(
∞∑

n=−∞

einφσ(φ, n)f̂(n)

)
dφ.

Since Tσ is nuclear, there exist sequences {gk}∞k=−∞ in Lp
′
(S1) and {hk}∞k=−∞

in Lp(S1) such that

∞∑
k=−∞

‖hk‖Lp(S1)‖gk‖Lp′ (S1) <∞

and

σ(θ, n) = 2πe−inθ
∞∑

k=−∞

hk(θ)ĝk(−n), (θ, n) ∈ S1 × Z.
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So,

(TτTσf)(θ)

= 2π
∞∑

m=−∞

eimθτ(θ,m)

∫ π

−π
e−imφ

∞∑
n=−∞

∞∑
k=−∞

hk(φ)ĝk(−n)f̂(n) dφ

= (4π)2

∞∑
n=−∞

einθ

[
e−inθ

∞∑
k=−∞

∞∑
m=−∞

eimθτ(θ,m)ĥk(m)ĝk(−n)

]
f̂(n) dφ

=
∞∑

n=−∞

einθλ(θ, n)f̂(n), θ ∈ [−π, π],

where

λ(θ, n) = 4π2e−inθ
∞∑

k=−∞

eimθτ(θ,m)ĥk(m)ĝk(−n)

= 4π2e−inθ
∞∑

k=−∞

uk(θ)ĝk(−n), (θ, n) ∈ S1 × Z,

where

uk(θ) =
∞∑

k=−∞

eimθτ(θ,m)ĥk(m), θ ∈ [−π, π].

Since Tτ : Lp(S1) → Tτ (S1) is a bounded linear operator, it follows that
there exists a positive constant C such that

‖uk‖Lp(S1) = ‖Tτuk‖Lp(S1) ≤ C‖hk‖Lp(S1), k ∈ Z,

and the proof is complete. 2
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