Characterizations of Nuclear Pseudo-Differential Operators on \mathbb{S}^{1} with Applications to Adjoints and Products

M. B. Ghaemi, M. Jamalpour Birgani ${ }^{1}$
School of Mathematics
Iran University of Science and Technology
Tehran, Tehran Province
Iran
E-Mail: mghaemi@iust.ac.ir; m_jamalpour@mathdep.iust.ac.ir

M. W. Wong ${ }^{2}$

Department of Mathematics and Statistics
York University
4700 Keele Street
Toronto, Ontario M3J 1P3
Canada
E-Mail: mwwong@mathstat.yorku.ca

Abstract

We give necessary and sufficient conditions on the symbols to guarantee that the corresponding pseudo-differential operators are nuclear from $L^{p_{1}}\left(\mathbb{S}^{1}\right)$ into $L^{p_{2}}\left(\mathbb{S}^{1}\right)$ for $1 \leq p_{1}, p_{2}<\infty$. Applications are given to adjoints of nuclear pseudo-differential operators from $L^{p_{2}^{\prime}}\left(\mathbb{S}^{1}\right)$ into $L^{p_{1}^{\prime}}\left(\mathbb{S}^{1}\right)$ for $1 \leq p_{1}, p_{2}<\infty$ and products of nuclear pseudo-differential operators on $L^{p}\left(\mathbb{S}^{1}\right), 1 \leq p<\infty$.

2000 Mathematics Subject Classification: Primary 47G30; Secondary 47G10

Key Words and Phrases: pseudo-differential operators, nuclear operators, traces, adjoints, products,

[^0]
1 Introduction

Nuclear operators on Banach spaces as generalizations of trace class operators can be traced at least to Grothendieck [10, 11]. First results on nuclear integral operators and pseudo-differential operators on L^{p} spaces in simple settings like the unit circle centered at the origin and the discrete group of all integers, $1 \leq p<\infty$, can be found in $[2,3,6]$.

Let \mathbb{S}^{1} be the unit circle centered at the origin and let \mathbb{Z} be the set of all integers. For every measurable function σ on $\mathbb{S}^{1} \times \mathbb{Z}$ and every measurable function f on \mathbb{S}^{1}, we define the function $T_{\sigma} f$ on \mathbb{S}^{1} formally by

$$
\left(T_{\sigma} f\right)(\theta)=\sum_{n \in \mathbb{Z}} e^{i n \theta} \sigma(\theta, n) \hat{f}(n), \quad \theta \in[-\pi, \pi],
$$

where $\hat{f}(n)$ is the Fourier transform of f given by

$$
\hat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i n \theta} f(\theta) d \theta, \quad n \in \mathbb{Z}
$$

We call T_{σ} the pseudo-differential operator on \mathbb{S}^{1} with symbol σ.
Conditions on the symbols σ to insure the boundedness, compactness and self-adjointness of the corresponding pseudo-differential operators T_{σ} have been given in $[1,7,8,12,13,14,15,17]$. In addition, Fredholmness and nuclearity of pseudo-differential operators T_{σ} under suitable conditions on the symbols σ are investigated in [2,3]. These results can be extended easily from the unit circle \mathbb{S}^{1} to the n-torus \mathbb{T}^{n} given by

$$
\mathbb{T}^{n}=\underbrace{\mathbb{S}^{1} \times \cdots \times \mathbb{S}^{1}}_{n \text { times }}
$$

Extensions to compact Lie groups and to compact manifolds can be found, for instance, in, respectively, [5] and [4] In a nutshell, the results hitherto cited are on sufficient conditions on the symbols σ to prove mapping properties of the corresponding pseudo-differential operators T_{σ}. To the best of our knowledge, very few results on necessary and sufficient conditions on the symbols σ for the corresponding pseudo-differential operators to have the desired mapping properties exist. A notable exception is the paper [12] by Molahajloo on compact pseudo-differential operators on \mathbb{S}^{1}.

The aim of this paper is to present necessary and sufficient conditions on the symbols σ for the corresponding pseudo-differential operators T_{σ} to be nuclear from $L^{p_{1}}\left(\mathbb{S}^{1}\right)$ into $L^{p_{2}}\left(\mathbb{S}^{1}\right)$ for $1 \leq p_{1}, p_{2}<\infty$. We also give necessary and sufficient conditions on the symbols σ to guarantee that the adjoints and products of pseudo-differential operators are nuclear.

We first give in Section 2 the definition of nuclear operators on Banach spaces and the main tool $[2,3,6]$ to be used in this paper. Then we give necessary and sufficient conditions on the symbols σ so that the corresponding pseudo-differential operators T_{σ} are nuclear from $L^{p_{1}}\left(\mathbb{S}^{1}\right)$ into $L^{p_{2}}\left(\mathbb{S}^{1}\right)$ for $1 \leq p_{1}, p_{2}<\infty$. In Section 3 are given necessary and sufficient conditions on the symbols σ for which the adjoints of pseudo-differential operators T_{σ} are nuclear. The nuclearity of products of nuclear operators is given in Section 4.

All results in this paper can be routinely extended from the unit circle \mathbb{S}^{1} to the n-torus \mathbb{T}^{n}. It is worth pointing out that characterizing trace class pseudo-differential operators on $L^{2}\left(\mathbb{R}^{n}\right)$ can be found in [16].

2 Nuclearity on $L^{p}\left(\mathbb{S}^{1}\right)$

Let X and Y be complex Banach spaces and let $T: X \rightarrow Y$ be a bouned linear operator. Suppose that we can find sequences $\left\{x_{n}^{\prime}\right\}_{n=1}^{\infty}$ in the dual space X^{\prime} of X and $\left\{y_{n}\right\}_{n=1}^{\infty}$ in Y such that

$$
\sum_{n=1}^{\infty}\left\|x_{n}^{\prime}\right\|_{X^{\prime}}\left\|y_{n}\right\|_{Y}<\infty
$$

and

$$
T x=\sum_{n=1}^{\infty} x_{n}^{\prime}(x) y_{n}, \quad x \in X .
$$

Then we call $T: X \rightarrow Y$ a nuclear operator and its trace $\operatorname{tr}(T)$ is defined by

$$
\operatorname{tr}(T)=\sum_{n=1}^{\infty} x_{n}^{\prime}\left(y_{n}\right) .
$$

It can be proved that the definition of a nuclear operator and the definition of the trace of a nuclear operator are independent of the choices of the sequences $\left\{x_{n}^{\prime}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$. Details can be found in [9].

For L^{p} spaces, the main tool is the following result in $[2,3,6]$.
Theorem 2.1 Let $\left(X_{1}, \mu_{1}\right)$ and $\left(X_{2}, \mu_{2}\right)$ be σ-finite measure spaces. A bounded linear operator $T: L^{p_{1}}\left(X_{1}, \mu_{1}\right) \rightarrow L^{p_{2}}\left(X_{2}, \mu_{2}\right), 1 \leq p_{1}, p_{2}<\infty$, is nuclear if and only if there exist sequences $\left\{g_{n}\right\}_{n=1}^{\infty}$ in $L^{p_{1}^{\prime}}\left(\left(X_{1}, \mu_{1}\right)\right.$ and $\left\{h_{n}\right\}_{n=1}^{\infty}$ in $L^{p_{2}}\left(X_{2}, \mu_{2}\right)$ such that for all $f \in L^{p_{1}}\left(X_{1}, \mu_{1}\right)$,

$$
(T f)(x)=\int_{X_{1}}\left(\sum_{n=1}^{\infty} h_{n}(x) g_{n}(y)\right) f(y) d \mu_{1}(y), \quad x \in X_{2},
$$

and

$$
\sum_{n=1}^{\infty}\left\|g_{n}\right\|_{L^{p_{1}^{\prime}}\left(X_{1}, \mu_{1}\right)}\left\|h_{n}\right\|_{L^{p_{2}\left(X_{2}, \mu_{2}\right)}}<\infty .
$$

The functin K on $X_{2} \times X_{1}$ defined by

$$
K(x, y)=\sum_{n=1}^{\infty} h_{n}(x) g_{n}(y), \quad x \in X_{2}, y \in X_{1},
$$

is known as the kernel of the nuclear operator $T: L^{p_{1}}\left(X_{1}, \mu_{1}\right) \rightarrow L^{p_{2}}\left(X_{2}, \mu_{2}\right)$. If $X_{1}=X_{2}=X, p_{1}=p_{2}=p$ and $\mu_{1}=\mu_{2}=\mu$ is a σ-finite measure, then for almost all $x \in X$,

$$
\int_{X}|K(x, y)| d \mu(y) \leq \sum_{n=1}^{\infty}\left\|h_{n}\right\|_{L^{p}(X, \mu)}\left\|g_{n}\right\|_{L^{p^{\prime}}(X, \mu)} .
$$

The trace $\operatorname{tr}(T)$ of $T: L^{p}(X, \mu) \rightarrow L^{p}(X, \mu)$ is given by

$$
\operatorname{tr}(T)=\int_{X} K(x, x) d \mu(x) .
$$

We give in the following theorem a necessary and sufficent condition on the symbol σ to make sure that the corresponding pseudo-differential operator T_{σ} from $L^{p_{1}}\left(\mathbb{S}^{1}\right)$ into $L^{p_{2}}\left(\mathbb{S}^{1}\right)$ is nuclear for $1 \leq p_{1}, p_{2}<\infty$.

Theorem 2.2 Let σ be a measurable function on $\mathbb{S}^{1} \times \mathbb{Z}$. Then the pseudodifferential operator $T_{\sigma}: L^{p_{1}}\left(\mathbb{S}^{1}\right) \rightarrow L^{p_{2}}\left(\mathbb{S}^{1}\right)$ is nuclear for $1 \leq p_{1}, p_{2}<\infty$ if
and only if there exist sequences $\left\{g_{k}\right\}_{k=1}^{\infty}$ in $L^{p_{1}^{\prime}}\left(\mathbb{S}^{1}\right)$ and $\left\{h_{k}\right\}_{k=1}^{\infty}$ in $L^{p_{2}}\left(\mathbb{S}^{1}\right)$ such that

$$
\sum_{k=-\infty}^{\infty}\left\|h_{k}\right\|_{L^{p_{2}}\left(\mathbb{S}^{1}\right)}\left\|g_{k}\right\|_{L^{p_{1}^{\prime}}\left(\mathbb{S}^{1}\right)}<\infty
$$

and

$$
\sigma(\theta, n)=2 \pi e^{-i n \theta} \sum_{k=-\infty}^{\infty} h_{n}(\theta) \widehat{g_{k}}(-n), \quad(\theta, n) \in \mathbb{S}^{1} \times \mathbb{Z}
$$

Proof We only need to prove the necessity. Suppose that $T_{\sigma}: L^{p_{1}}\left(\mathbb{S}^{1}\right) \rightarrow$ $L^{p_{2}}\left(\mathbb{S}^{1}\right)$ is nuclear. By Theorem 2.1, there exist sequences $\left\{g_{k}\right\}_{k=1}^{\infty}$ in $L^{p_{1}^{\prime}}\left(\mathbb{S}^{1}\right)$ and $\left\{h_{k}\right\}_{k=1}^{\infty}$ in $L^{p_{2}}\left(\mathbb{S}^{1}\right)$ such that

$$
\sum_{k=1}^{\infty}\left\|k_{k}\right\|_{L^{p_{2}}\left(\mathbb{S}^{1}\right)}\left\|g_{k}\right\|_{L^{p_{1}^{\prime}}\left(\mathbb{S}^{1}\right)}<\infty
$$

and for all $f \in L^{p_{1}}\left(\mathbb{S}^{1}\right)$,

$$
\begin{align*}
\left(T_{\sigma} f\right)(\theta) & =\sum_{k=-\infty}^{\infty} e^{i k \theta} \sigma(\theta, k) \hat{f}(k) \\
& =\int_{-\pi}^{\pi}\left(\sum_{k=-\infty}^{\infty} h_{k}(\theta) g_{k}(\phi)\right) f(\phi) d \phi, \quad \theta \in[-\pi, \pi] \tag{2.1}
\end{align*}
$$

Now, for all $n \in \mathbb{Z}$, we let e_{n} be the function on \mathbb{S}^{1} defined by

$$
e_{n}(\theta)=e^{i n \theta}, \quad \theta \in[-\pi, \pi] .
$$

Since

$$
\widehat{e_{n}}(k)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i k \theta} e^{i n \theta} d \theta= \begin{cases}0, & k \neq n \\ 1, & k=n\end{cases}
$$

If we let $f=e_{n}$ in (2.1), then we get

$$
\begin{aligned}
e^{i n \theta} \sigma(\theta, n) & =\int_{-\pi}^{\pi}\left(\sum_{k=-\infty}^{\infty} h_{k}(\theta) g_{k}(\phi)\right) e^{i n \phi} d \phi \\
& =\sum_{k=-\infty}^{\infty} h_{k}(\theta) \int_{-\pi}^{\pi} e^{i n \phi} g_{k}(\phi) d \phi \\
& =2 \pi \sum_{k=-\infty}^{\infty} h_{k}(\theta) \widehat{g_{k}}(-n), \quad \theta \in[-\pi, \pi] .
\end{aligned}
$$

Therefore

$$
\sigma(\theta, n)=2 \pi e^{-i n \theta} \sum_{k=-\infty}^{\infty} h_{k}(\theta) \widehat{g_{k}}(-n), \quad(\theta, n) \in \mathbb{S}^{1} \times \mathbb{Z}
$$

Conversely, suppose that there exist sequences $\left\{g_{k}\right\}_{k=1}^{\infty}$ in $L^{p_{1}^{\prime}}\left(\mathbb{S}^{1}\right)$ and $\left\{h_{k}\right\}_{k=1}^{\infty}$ in $L^{p_{2}}\left(\mathbb{S}^{1}\right)$ such that

$$
\sum_{k=-\infty}^{\infty}\left\|h_{k}\right\|_{L^{p_{2}}\left(\mathbb{S}^{1}\right)}\left\|g_{k}\right\|_{L^{p_{1}^{\prime}}\left(\mathbb{S}^{1}\right)}<\infty
$$

and

$$
\sigma(\theta, n)=2 \pi e^{-i n \theta} \sum_{k=-\infty}^{\infty} h_{k}(\theta) \widehat{g_{k}}(-n), \quad(\theta, n) \in \mathbb{S}^{1} \times \mathbb{Z}
$$

Then for all $f \in L^{p_{1}}\left(\mathbb{S}^{1}\right)$,

$$
\begin{aligned}
\left(T_{\sigma} f\right)(\theta) & =\sum_{n=-\infty}^{\infty} e^{i n \theta} \sigma(\theta, n) \hat{f}(n) \\
& =2 \pi \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} h_{k}(\theta) \widehat{g_{k}}(-n) \hat{f}(n) \\
& =\sum_{n=-\infty}^{\infty}\left(\sum_{k=-\infty}^{\infty} h_{k}(\theta) \int_{-\pi}^{\pi} e^{i n \phi} g_{k}(\phi) d \phi\right) \hat{f}(n) \\
& =\int_{-\pi}^{\pi} \sum_{n=-\infty}^{\infty} e^{i n \phi} \hat{f}(n) \sum_{k=-\infty}^{\infty} h_{k}(\theta) g_{k}(\phi) d \phi \\
& =\int_{-\pi}^{\pi}\left(\sum_{k=-\infty}^{\infty} h_{k}(\theta) g_{k}(\phi)\right) f(\phi) d \phi, \quad \theta \in[-\pi, \pi] .
\end{aligned}
$$

Before we give an application of Theorem 2.2, we need another characterization of nuclear operators from $L^{p_{1}}\left(\mathbb{S}^{1}\right)$ into $L^{p_{2}}\left(\mathbb{S}^{1}\right), 1 \leq p_{1}, p_{2}<\infty$..

Theorem 2.3 Let σ be a measurable function on $\mathbb{S}^{1} \times \mathbb{Z}$. Then the pseudodifferential operator $T_{\sigma}: L^{p_{1}}\left(\mathbb{S}^{1}\right) \rightarrow L^{p_{2}}\left(\mathbb{S}^{1}\right)$ is nuclear if and only if there exist sequences $\left\{g_{k}\right\}_{k=1}^{\infty}$ in $L^{p_{1}^{\prime}}\left(\mathbb{S}^{1}\right)$ and $\left\{h_{k}\right\}_{k=1}^{\infty}$ in $L^{p_{2}}\left(\mathbb{S}^{1}\right)$ such that

$$
\sum_{k=-\infty}^{\infty}\left\|h_{k}\right\|_{L^{p_{2}}\left(\mathbb{S}^{1}\right)}\left\|g_{k}\right\|_{L^{p^{\prime}}\left(\mathbb{S}^{1}\right)}<\infty
$$

and

$$
\sum_{n=-\infty}^{\infty} e^{i n(\theta-\phi)} \sigma(\theta, n)=4 \pi^{2} \sum_{k=-\infty}^{\infty} h_{k}(\theta) g_{k}(\phi), \quad \theta, \phi \in[-\pi, \pi] .
$$

Proof Suppose that $T_{\sigma}: L^{p_{1}}\left(\mathbb{S}^{1}\right) \rightarrow L^{p_{2}}\left(\mathbb{S}^{1}\right)$ is nuclear. Then by Theorem 2.1, there exist sequences $\left\{g_{k}\right\}_{k=1}^{\infty}$ in $L^{p_{1}^{\prime}}\left(\mathbb{S}^{1}\right)$ and $\left\{h_{k}\right\}_{k=1}^{\infty}$ in $L^{p_{2}}\left(\mathbb{S}^{1}\right)$ such that

$$
\sum_{k=-\infty}^{\infty}\left\|h_{k}\right\|_{L^{p_{2}}\left(\mathbb{S}^{1}\right)}\left\|g_{k}\right\|_{L^{p_{1}^{\prime}}\left(\mathbb{S}^{1}\right)}<\infty
$$

and

$$
e^{i n \theta} \sigma(\theta, n)=2 \pi \sum_{k=-\infty}^{\infty} h_{k}(\theta) \widehat{g_{k}}(-n), \quad(\theta, n) \in \mathbb{S}^{1} \times \mathbb{Z}
$$

Thus, for all θ and ϕ in $[-\pi, \pi]$,

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty} e^{i n(\theta-\phi)} \sigma(\theta, n) & =2 \pi \sum_{n=-\infty}^{\infty} e^{-i n \phi} \sum_{k=-\infty}^{\infty} h_{k}(\theta) \widehat{g_{k}}(-n) \\
& =2 \pi \int_{-\pi}^{\pi} \sum_{n=-\infty}^{\infty} e^{i n(\omega-\phi)} \sum_{k=-\infty}^{\infty} h_{k}(\theta) g_{k}(\omega) d \omega \\
& =4 \pi^{2} \int_{-\pi}^{\pi} \delta(\phi-\omega)\left(\sum_{k=-\infty}^{\infty} h_{k}(\theta) g_{k}(\omega)\right) d \omega \\
& =4 \pi^{2} \sum_{k=-\infty}^{\infty} h_{k}(\theta) g_{k}(\phi) .
\end{aligned}
$$

The converse is clear from Theorem 2.1.
An immediate consequence of Lemma 2.3 is the following result.
Theorem 2.4 Let $T_{\sigma}: L^{p}\left(\mathbb{S}^{1}\right) \rightarrow L^{p}\left(\mathbb{S}^{1}\right)$ be a nuclear operator, where $1 \leq$ $p<\infty$. Then

$$
\operatorname{tr}\left(T_{\sigma}\right)=\frac{1}{4 \pi^{2}} \int_{-\pi}^{\pi} \sum_{n=-\infty}^{\infty} \sigma(\theta, n) d \theta
$$

Proof By 2.1 andTheorem 2.3,

$$
\operatorname{tr}\left(T_{\sigma}\right)=\int_{-\pi}^{\pi} \sum_{k=-\infty}^{\infty} h_{k}(\theta) g_{k}(\theta) d \theta=\frac{1}{4 \pi^{2}} \int_{-\pi}^{\pi} \sum_{n=-\infty}^{\infty} \sigma(\theta, n) d \theta
$$

3 Adjoints

Let σ be a measurable function on $\mathbb{S}^{1} \times \mathbb{Z}$ such that the pseudo-differential operator $T_{\sigma}: L^{p_{1}}\left(\mathbb{S}^{1}\right) \rightarrow L^{p_{2}}\left(\mathbb{S}^{1}\right)$ is nuclear. Then there exist sequences
$\left\{g_{k}\right\}_{k=-\infty}^{\infty}$ in $L^{p_{1}^{\prime}}\left(\mathbb{S}^{1}\right)$ and $\left\{h_{k}\right\}_{-\infty}^{\infty}$ in $L^{p_{2}}\left(\mathbb{S}^{1}\right)$ such that

$$
\sum_{k=-\infty}^{\infty}\left\|g_{k}\right\|_{L^{p_{1}^{\prime}}\left(\mathbb{S}^{1}\right)}\left\|h_{k}\right\|_{L^{p_{2}\left(\mathbb{S}^{1}\right)}}<\infty
$$

and

$$
\left(T_{\sigma} f\right)(\theta)=2 \pi e^{-i n \theta} \sum_{k=-\infty}^{\infty} h_{k}(\theta) \widehat{g_{k}}(-n), \quad \theta \in[-\pi, \pi] .
$$

The following theorem tells us that the adjoint $T_{\sigma}: L^{p_{2}^{\prime}}\left(\mathbb{S}^{1}\right) \rightarrow L^{p_{1}^{\prime}}\left(\mathbb{S}^{1}\right)$ is nuclear and its symbol σ^{*} can also be expressed explicitly.

Theorem 3.1 Let σ be a measurable function on $\mathbb{S}^{1} \times \mathbb{Z}$ such that T_{σ} : $L^{p_{1}}\left(\mathbb{S}^{1}\right) \rightarrow L^{p_{2}}\left(\mathbb{S}^{1}\right)$ is nuclear. Let $\left\{g_{k}\right\}_{k=-\infty}^{\infty}$ and $\left\{h_{k}\right\}_{k=-\infty}^{\infty}$ be sequences in, respectively, $L^{p_{1}^{\prime}}\left(\mathbb{S}^{1}\right)$ and $L^{p_{2}}\left(\mathbb{S}^{1}\right)$ such that

$$
\sum_{k=-\infty}^{\infty}\left\|h_{k}\right\|_{L^{p_{2}}\left(\mathbb{S}^{1}\right)}\left\|g_{k}\right\|_{L^{p_{1}^{\prime}}\left(\mathbb{S}^{1}\right)}<\infty
$$

and

$$
\sigma(\theta, n)=2 \pi e^{-i n \theta} \sum_{k=-\infty}^{\infty} h_{k}(\theta) \widehat{g_{k}}(-n), \quad(\theta, n) \in \mathbb{S}^{1} \times \mathbb{Z}
$$

Then $T_{\sigma}^{*}: L^{p_{2}^{\prime}}\left(\mathbb{S}^{1}\right) \rightarrow L^{p_{1}^{\prime}}\left(\mathbb{S}^{1}\right)$ is nuclear and the symbol σ^{*} of T_{σ}^{*} is given by

$$
\sigma^{*}(\theta, n)=2 \pi e^{i n \theta} \sum_{m=-\infty}^{\infty} \overline{g_{m}}(\theta) \widehat{\widehat{h_{m}}}(-n), \quad(\theta, n) \in \mathbb{S}^{1} \times \mathbb{Z}
$$

Proof For all functions $u \in L^{p}\left(\mathbb{S}^{1}\right)$ and $v \in L^{p^{\prime}}\left(\mathbb{S}^{1}\right), 1 \leq p \leq \infty$, we define (u, v) by

$$
(u, v)=\int_{-\pi}^{\pi} u(\theta) \overline{v(\theta)} d \theta
$$

Now, for all $f \in L^{p_{1}}\left(\mathbb{S}^{1}\right)$ and $g \in L^{p_{2}^{\prime}}\left(\mathbb{S}^{1}\right)$,

$$
\left(T_{\sigma} f, g\right)=\left(f, T_{\sigma^{*}} g\right)
$$

So,

$$
\int_{-\pi}^{\pi} \sum_{m=-\infty}^{\infty} e^{i m \theta} \sigma(\theta, m) \hat{f}(m) \overline{g(\theta)} d \theta=\int_{-\pi}^{\pi} f(\theta) \sum_{m=-\infty}^{\infty} \overline{e^{i m \theta} \sigma^{*}(\theta, m) \hat{g}(m)} d \theta
$$

Now, let $f(\theta)=e^{i n \theta}$ and $g(\theta)=e^{i k \theta}$ for all $\theta \in[-\pi, \pi]$, where n and k are integers. Then

$$
\int_{-\pi}^{\pi} e^{-i(k-n) \theta} \sigma(\theta, n) d \theta=\int_{-\pi}^{\pi} e^{-i(k-n) \theta} \overline{\sigma^{*}(\theta, k)} d \theta .
$$

Thus,

$$
\overline{\hat{\sigma}(k-n, n)}=\widehat{\sigma^{*}}(n-k, k), \quad n, k \in \mathbb{Z} .
$$

Therefore

$$
\begin{aligned}
\sigma^{*}(\theta, n) & =\sum_{k=-\infty}^{\infty} e^{i(k-n) \theta} \widehat{\sigma^{*}}(k-n, n) \\
& =\sum_{k=-\infty}^{\infty} e^{i(k-n) \theta} \overline{\hat{\sigma}(n-k, k)} \\
& =\frac{1}{2 \pi} \sum_{k=-\infty}^{\infty} e^{i(k-n) \theta} \overline{\int_{-\pi}^{\pi} e^{-i(n-k) \phi} \sigma(\phi, k) d \phi} \\
& =\sum_{k=-\infty}^{\infty} e^{i(k-n) \theta} \overline{\int_{-\pi}^{\pi} e^{-i k \phi} \sum_{m=-\infty}^{\infty} h_{m}(\phi) \widehat{g_{m}}(-k) d \phi} \\
& =\frac{1}{2 \pi} e^{-i n \theta} \overline{\int_{-\pi}^{\pi} e^{-i n \phi}} \sum_{m=-\infty}^{\infty} h_{m}(\phi) \int_{-\pi}^{\pi} \sum_{k=-\infty}^{\infty} e^{i k(\omega-\theta)} g_{m}(\omega) d \omega d \phi \\
& =e^{-i n \theta} \overline{\int_{-\pi}^{\pi} e^{-i n \phi} \sum_{m=-\infty}^{\infty} h_{m}(\phi) \int_{-\pi}^{\pi} \delta(\theta-\omega) g_{m}(\omega) d \omega d \phi} \\
& =e^{-i n \theta} \overline{\int_{-\pi}^{\pi} e^{-i n \phi} \sum_{m=\infty}^{\infty} h_{m}(\phi) g_{m}(\theta) d \phi} \\
& =2 \pi e^{-i n \theta} \sum_{m=-\infty}^{\infty} \overline{g_{m}}(\theta) \widehat{h_{m}}(-n)
\end{aligned}
$$

for all $(\theta, n) \in \mathbb{S}^{1} \times \mathbb{Z}$. This completes the proof.

4 Products

The following theorem tells us in particular that the product of two nuclear operators from $L^{p}\left(\mathbb{S}^{1}\right)$ into $L^{p}\left(\mathbb{S}^{1}\right), 1 \leq p<\infty$, is nuclear.

Theorem 4.1 For $1 \leq p<\infty$, let $T_{\sigma}: L^{p}\left(\mathbb{S}^{1}\right) \rightarrow L^{p}\left(\mathbb{S}^{1}\right)$ be a nuclear operator and let $T_{\tau}: L^{p}\left(\mathbb{S}^{1}\right) \rightarrow L^{p}\left(\mathbb{S}^{1}\right)$ be a bounded linear operator. Then the pseudo-differential operator $T_{\tau} T_{\sigma}: L^{p}\left(\mathbb{S}^{1}\right) \rightarrow L^{p}\left(\mathbb{S}^{1}\right)$ is a nulcear operator. Moreover, the symbol λ of $T_{\tau} T_{\sigma}$ is given by

$$
\lambda(\theta, n)=4 \pi^{2} e^{-i n \theta} \sum_{k=\infty}^{\infty} u_{k}(\theta) \widehat{g_{k}}(-n), \quad(\theta, n) \in \mathbb{S}^{1} \times \mathbb{Z},
$$

where

$$
u_{k}(\theta)=\sum_{m=-\infty}^{\infty} e^{i m \theta} \tau(\theta, m) \widehat{h_{k}}(m)=\left(T_{\tau} h_{k}\right)(\theta), \quad \theta \in[-\pi \cdot \pi] .
$$

Proof Let $f \in L^{p}\left(\mathbb{S}^{1}\right)$. Then for all $\theta \in[-\pi . \pi]$,

$$
\begin{aligned}
& \left(T_{\tau} T_{\sigma} f\right)(\theta) \\
= & \sum_{m=-\infty}^{\infty} e^{i m \theta} \tau(\theta, m)\left(T_{\sigma} f\right)^{\wedge}(m) \\
= & \frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{i m \theta} \tau(\theta, m) \int_{-\pi}^{\pi} e^{-i m \phi}\left(\sum_{n=-\infty}^{\infty} e^{i n \phi} \sigma(\phi, n) \hat{f}(n)\right) d \phi .
\end{aligned}
$$

Since T_{σ} is nuclear, there exist sequences $\left\{g_{k}\right\}_{k=-\infty}^{\infty}$ in $L^{p^{\prime}}\left(\mathbb{S}^{1}\right)$ and $\left\{h_{k}\right\}_{k=-\infty}^{\infty}$ in $L^{p}\left(\mathbb{S}^{1}\right)$ such that

$$
\sum_{k=-\infty}^{\infty}\left\|h_{k}\right\|_{L^{p}\left(\mathbb{S}^{1}\right)}\left\|g_{k}\right\|_{L^{p^{\prime}}\left(\mathbb{S}^{1}\right)}<\infty
$$

and

$$
\sigma(\theta, n)=2 \pi e^{-i n \theta} \sum_{k=-\infty}^{\infty} h_{k}(\theta) \widehat{g_{k}}(-n), \quad(\theta, n) \in \mathbb{S}^{1} \times \mathbb{Z}
$$

So,

$$
\begin{aligned}
& \left(T_{\tau} T_{\sigma} f\right)(\theta) \\
= & 2 \pi \sum_{m=-\infty}^{\infty} e^{i m \theta} \tau(\theta, m) \int_{-\pi}^{\pi} e^{-i m \phi} \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} h_{k}(\phi) \widehat{g_{k}}(-n) \hat{f}(n) d \phi \\
= & (4 \pi)^{2} \sum_{n=-\infty}^{\infty} e^{i n \theta}\left[e^{-i n \theta} \sum_{k=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} e^{i m \theta} \tau(\theta, m) \widehat{h_{k}}(m) \widehat{g_{k}}(-n)\right] \hat{f}(n) d \phi \\
= & \sum_{n=-\infty}^{\infty} e^{i n \theta} \lambda(\theta, n) \hat{f}(n), \quad \theta \in[-\pi, \pi],
\end{aligned}
$$

where

$$
\begin{aligned}
\lambda(\theta, n) & =4 \pi^{2} e^{-i n \theta} \sum_{k=-\infty}^{\infty} e^{i m \theta} \tau(\theta, m) \widehat{h_{k}}(m) \widehat{g_{k}}(-n) \\
& =4 \pi^{2} e^{-i n \theta} \sum_{k=-\infty}^{\infty} u_{k}(\theta) \widehat{g_{k}}(-n), \quad(\theta, n) \in \mathbb{S}^{1} \times \mathbb{Z}
\end{aligned}
$$

where

$$
u_{k}(\theta)=\sum_{k=-\infty}^{\infty} e^{i m \theta} \tau(\theta, m) \widehat{h_{k}}(m), \quad \theta \in[-\pi, \pi] .
$$

Since $T_{\tau}: L^{p}\left(\mathbb{S}^{1}\right) \rightarrow T_{\tau}\left(\mathbb{S}^{1}\right)$ is a bounded linear operator, it follows that there exists a positive constant C such that

$$
\left\|u_{k}\right\|_{L^{p}\left(\mathbb{S}^{1}\right)}=\left\|T_{\tau} u_{k}\right\|_{L^{p}\left(\mathbb{S}^{1}\right)} \leq C\left\|h_{k}\right\|_{L^{p}\left(\mathbb{S}^{1}\right)}, \quad k \in \mathbb{Z}
$$

and the proof is complete.
Acknowledgment The authors are grateful to the referee for the comments on the first version of the paper.

References

[1] D. Cardona, Hölder estimates for pseudo-differential operators on \mathbb{T}^{1}, J. Pseudo-Differ. Oper. Appl. 5 (2014), 517-525.
[2] J. Delgado, The trace of nuclear operators on $L^{p}(\mu)$ for σ-finite Borel measureson second countable spaces, Integr. Equ. Oper. Theory 68 (2010), 61-74.
[3] J. Delgado, A trace formula for nuclear operatorson L^{p}, in PseudoDifferential Operators: Complex Analysis and Partial Differential Equations, Operator Theory: Advances and Applications 205, Birkhäuser, 2010, 181-193.
[4] J. Delgado and M. Ruzhansky, Kernel and symbol criteria for Schatten classes and r-nuclarity on compact manifolds, C. R. Acad. Sci. Paris, Ser. I 352 (2014), 779-784.
[5] J. Delgado and M. Ruzhansky, L_{p} nuclarity, traces, and GrothendieckLidskii formula on compact Lie groups, J. Math. Pures Appl. 102 (2014), 153-172.
[6] J. Delgado and M. W. Wong, L^{p}-nuclear pseudo-differential operators on \mathbb{Z} and \mathbb{S}^{1}, Proc. Amer. Math. Soc. 141 (2013), 3935-3942.
[7] M. B. Ghaemi, E. Nabizadeh Morsalfard and M. Jamalpour Birgani, A study on the adjoint of pseudo-differential operators on \mathbb{S}^{1} and \mathbb{Z}, J. Pseudo-Differ. Oper. Appl. 6 (2015), 197-203.
[8] M. B. Ghaemi, M. Jamalpour Birgani and E. Nabizadeh Morsalfard, A study on pseudo-differential operators on \mathbb{S}^{1} and \mathbb{Z}, J. Pseudo-Differ. Oper. Appl. 7 (2016), 237-247.
[9] I. Gohberg, S. Goldberg and N. Krupnik, Traces and Determinants of Linear Operators, Operator Theory: Advances and Applications 116, Birkhäuser, 2000.
[10] A. Grothendieck, Produits Tensoriels Topologiques et Espaces Nucléaires, Memoirs Amer. Math. Soc. 16, 1955.
[11] A. Grothendieck, La theorie de Fredholm, Bull. Soc. Math. France 84 (1956), 319-384.
[12] S. Molahajloo, A characterization of compact pseudo-differential operators on \mathbb{S}^{1}, in Pseudo-Differential Operators: Analysis, Applications
and Computations, Operator Theory: Advances and Applications 213, Birkhäuser, 2011, 25-31.
[13] S. Molahajloo and M. W. Wong, Pseudo-differential operators on \mathbb{S}^{1}, in New Developments in Pseudo-Differential Operators, Operator Theory: Advances and Applications 189, Birkhäuser, 2008, 297-306.
[14] S. Molahajloo and M. W. Wong, Ellipticity, Fredholmness and spectral invariance of pseudo-differential operators on \mathbb{S}^{1}, J. Pseudo-Differ. Oper. Appl. 1 (2010), 183-205.
[15] M. Pirhayati, Spectral theory of pseudo-differential operators on \mathbb{S}^{1}, in Pseudo-Differential Operators: Analysis, Applications and Computations, Operator Theory: Advances and Applications 213, Birkhäuser, 2011, 15-25.
[16] M. W. Wong, Trace class Weyl transforms, in Recent Advances in Operator Theory and its applications, Operator Theory: Advances and Applications 160, Birkhäuser, 2005, 469-478.
[17] M. W. Wong, Discrete Fourier Analysis, Birkhäuser, 2011.

[^0]: ${ }^{1}$ The research of M. Jamalpour Birgani was carried out and completed during his visit of Professor M. W. Wong under the auspices of the International Visiting Research Traineeship (IVRT) in the Department of Mathematics and Statistics at York University.
 ${ }^{2}$ This research has been partially supported by the Natural Sciences and Engineering Research Council of Canada under Discovery Grant 0008562.

