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1. Introduction

For a signal f in L2(R), the Gabor transform or the short-time Fourier transform Gϕf of f with respect
to a window ϕ in L1(R) ∩ L2(R) is defined by

(Gϕf)(b, ξ) = (2π)−1/2
∫ ∞
−∞

e−ixξf(x)ϕ(x− b)dx, b, ξ ∈ R.

Let us note that

(Gϕf)(b, ξ) = (2π)−1/2(f,MξT−bϕ)L2(R), b, ξ ∈ R,

where Mξ and T−b are the modulation operator and the translation operator given by

(Mξh)(x) = eixξh(x)

and

(T−bh)(x) = h(x− b)

for all measurable functions h on R and all x in R. We call the function MξT−bϕ the Gabor wavelet
generated from ϕ by translation T−b and modulation Mξ.

The usefulness of the Gabor windows in signal analysis is enhanced by the following resolution of the
identity formula, which allows the reconstruction of a signal from its Gabor transform.
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Theorem 1.1. Suppose that ‖ϕ‖2 = 1, where ‖ ‖2 is the norm in L2(R). Then for all f and g in L2(R),

(f, g)L2(R) = (2π)−1
∫ ∞
−∞

∫ ∞
−∞

(f,MξT−xϕ)L2(R)(MξT−xϕ, g)L2(R)dx dξ.

Another way of looking at Theorem 1.1 is that for all f in L2(R),

f = (2π)−1
∫ ∞
−∞

∫ ∞
−∞

(f,MξT−xϕ)L2(R)MξT−xϕdx dξ,

which is also known as a continuous inversion formula for the Gabor transform.

In signal analysis, (Gϕf)(b, ξ) gives the time-frequency content of a signal f at time b and frequency
ξ by placing the window ϕ at time b. The drawback here is that a window of fixed width is used for all
time b. It is more accurate and desirable if we can have an adaptive window that gives a wide window
for low frequency and a narrow window for high frequency. That this can be done comes from familiarity
with the wavelet transform that we now recall.

Let ϕ ∈ L2(R) be such that ∫ ∞
−∞

|ϕ̂(ξ)|2

|ξ|
dξ <∞,

where ϕ̂ is the Fourier transform of ϕ. The convention that we use in this paper is that the Fourier
transform f̂ of a function f in L1(Rn) is defined by

f̂(ξ) = (2π)−n/2
∫
Rn

e−ix·ξf(x) dx, ξ ∈ Rn.

Such a function ϕ is said to satisfy the admissibility condition and is sometimes called the mother affine
wavelet. The adjective affine comes from the connection with the affine group that is the underpinning
of the wavelet transforms. See Chapter 18 of [19] in this connection.

Let ϕ ∈ L2(R) be a mother affine wavelet. Then for all b in R and a in R\{0}, we define the affine
wavelet ϕb,a by

ϕb,a(x) =
1√
|a|
ϕ

(
x− b
a

)
, x ∈ R.

We note that ϕb,a is generated from the function ϕ by translation and dilation. To put things in per-
spective, let b ∈ R and let a ∈ R\{0}. Then we see that the wavelet ϕb,a can be expressed as

ϕb,a = T−bD1/aϕ,

where D1/a is the dilation operator defined by

(D1/ah)(x) =
1√
|a|
h
(x
a

)
for all measurable functions h on R and all x in R.

Let ϕ be a mother affine wavelet. Then the wavelet transform Ωϕf of a function f in L2(R) is defined
to be the function on R× (R\{0}) by

(Ωϕf)(b, a) = (f, ϕb,a)L2(R)

for all b in R and a in R\{0}. The analysis of the wavelet transform is based on the following resolution
of the identity formula, which is also a continuous inversion formula.
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Theorem 1.2. Let ϕ be a mother affine wavelet. Then for all functions f and g in L2(R),

(f, g)L2(R) =
1

cϕ

∫ ∞
−∞

∫ ∞
−∞

(f, ϕb,a)L2(R)(ϕb,a, g)L2(R)
db da

a2
,

where

cϕ = 2π

∫ ∞
−∞

|ϕ̂(ξ)|2

|ξ|
dξ.

Remark 1.3. It can also be proved that a necessary condition for the continuous inver-
sion formula to hold is that ϕ has to be a mother affine wavelet. Indeed, suppose that∫∞
−∞

∫∞
−∞(f, ϕb,a)L2(R)(ϕb,a, g)L2(R)

db da
a2 exists for all f and g in L2(R). Then, letting f = g = ϕ, we

get ∫ ∞
−∞

∫ ∞
−∞
|(ϕ,ϕb,a)L2(R)|2

db da

a2
<∞,

which can be shown to be the same as ∫ ∞
−∞

|ϕ̂(ξ)|2

|ξ|
dξ <∞.

The resolution of the identity formula leads to the reconstruction formula, which says that

f =
1

cϕ

∫ ∞
−∞

∫ ∞
−∞

(f, ϕb,a)L2(R)ϕb,a
db da

a2

for all f in L2(R). In other words, we have a continuous inversion formula for the signal f from a
knowledge of its time-scale spectrum.

As in the case of the Gabor transform, there is a window ϕb,a in the wavelet transform. Unlike the
case of the Gabor transform, the window ϕb,a is adjustable in the sense that it is narrow if the scale a is
small and wide if the scale a is big.

Details on the analysis and applications of wavelets can be found in [6, 8, 19].
The wavelet transforms as defined are essentially one-dimensional time-frequency tools since the fre-

quency ξ and scale a can be thought of as being related by a = 1/ξ.
Another multiscale integral transform, which is dubbed the curvelet transform [3], has emerged in

time-frequency analysis. It is an interesting fact that the resolution of the identity formula is now only
valid for high-frequency signals. The full resolution of the identity formula for all signals with finite
energy requires an additional term to cope with low frequency signals as well. This additional term turns
out to be a wavelet multiplier first studied systematically in [9, 19].

Closely related to multi-dimensional wavelet transforms are ridgelet transforms first introduded by
Emmanuel Candés in his 1998 Ph.D. thesis [1,2]. As a matter of historical fact, ridgelets predate curvelets.
To recall, let Ψ : R→ R be a Schwartz function such that the admissibility condition∫ ∞

−∞

|Ψ̂(ξ)|2

|ξ|n
dξ <∞

holds. Such a function Ψ is appropriately called a mother ridgelet. The phase space Γ that is relevant
to the ridgelet transforms is given by

Γ = (0,∞)× Sn−1 × R,

where Sn−1 is the unit sphere centered at the origin in Rn. Points in Γ are sometimes denoted by γ and
the measure dγ on Γ is given by

dγ =
da

an+1
du db,
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where du is the surface measure of Sn−1. For γ = (a, u, b) ∈ Γ, the ridgelet Ψγ corresponding to γ is
defined by

Ψγ(x) =
1√
a
Ψ

(
(u · x)− b

a

)
, x ∈ Rn.

Let Ψ be a mother ridgelet. Then we define the ridgelet transform RΨf of a function f in L2(Rn) to
be the function on Γ by

(RΨf)(a, u, b) = (Ψa,u,b, f)L2(Rn), (a, u, b) ∈ Γ.

The following resolution of the identity formula for ridgelet transforms can be found in [1].

Theorem 1.4. Let Ψ be a mother ridgelet and let KΨ be the number given by

KΨ =

∫ ∞
−∞

|Ψ̂(ξ)|2

|ξ|n
dξ.

Then for all f and g in L2(Rn),

(f, g)L2(Rn) = cΨ

∫
Γ

(f, Ψγ)L2(Rn)(Ψγ , g)L2(Rn)dγ,

where
cΨ = (2π)−nK−1Ψ .

With the resolution of the identity formulas for ridgelet transforms in place, a symbol τ defined on
the phase space can be inserted into the integral in the resolution of the identity formula for the purpose
of localizing and a localization operator Lτ for the corresponding transform is obtained. Precisely, let τ
be a suitable measurable function on Γ . Then for every function f in L2(Rn), we define Lτf to be the
function in L2(Rn) by

(Lτf, g)L2(Rn) = cΨ

∫
Γ

τ(γ)(f, Ψγ)L2(Rn)(Ψγ , g)L2(Rn)dγ

for all functions g in L2(Rn).
The aim of this paper is to give conditions on the symbols to ensure that the corresponding localization

operators are bounded linear operators on L2(Rn), and to guarantee that related localization operators
are in the trace class S1. A trace formula for these trace class operators is given. We first give a recall of
the Radon transform that we need in the study of the ridgelet transforms in Section 2. In Section 3, we
give conditions on the symbols to guarantee that the corresponding localization operators are bounded
linear operators on L2(Rn). Localization operators in the trace class S1 together with a trace formula,
are given in Section 4. The non-self-adjoint operators with trace given in this paper are reminiscent of the
Landau–Pollak–Slepian operators [10, 13–16] and wavelet multipliers [4, 7, 9, 21, 22]. Chapters 19 and 20
of [19] contain self-contained contents on, respectively, the wavelet multipliers and the Landau–Pollak–
Slepian operators.

2. The Radon Transform

We give a recall of the Radon transform that we need in this paper. Let u ∈ Sn−1. Let s1, s2, . . . , sn−1
be unit vectors in Rn such that {s1, . . . , sn−1, u} is an orthonormal basis for Rn. Then for all points x in
Rn, we can write

x = tu+

n−1∑
j=1

vjsj ,
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where t, v1, . . . , vn−1 are real numbers. If f is a Schwartz function on Rn, then we define the Radon
transform of f in the direction u by

(Ruf)(t) =

∫
Rn−1

f

tu+

n−1∑
j=1

vjsj

 dv1 dv2 · · · dvn−1,

It can be proved that for each u in Sn−1, the definition of Ruf is independent of the choice of
s1, s2, . . . , sn−1 and ∫

Rn

f(x) dx =

∫ ∞
−∞

(Ruf)(t) dt.

Furthermore, we have the following result.

Theorem 2.1. Let f be a Schwartz function on Rn. Then for each u in Sn−1, Ruf is a Schwartz function
on R and

R̂uf(ξ) = (2π)(n−1)/2f̂(ξu), ξ ∈ R.

Section 5.2 of Chapter 6 in [17] contains more details on the Radon transform and its properties.

3. L2-Boundedness of Localization Operators for Ridgelet Transforms

We can now give the main result on the L2-boundedness of localization operators for ridgelet transforms.

Theorem 3.1. Let τ ∈ Lp(Γ ), 1 ≤ p ≤ ∞. Then the localization operator Lτ : L2(Rn) → L2(Rn) with
symbol τ is a bounded linear operator. Moreover,

‖Lτ‖∗ ≤ ((2π)n−1cΨ‖Ψ‖2L2(R))
1/p‖τ‖Lp(Γ ),

where ‖ ‖∗ is the norm in the C∗-algebra of all bounded linear operators on L2(Rn).

Proof. Let τ ∈ L∞(Γ ). Then using the Schwarz inequality and the resolution of the identity formula for
ridgelet transforms, we have for all f and g in L2(Rn)

|(Lτf, g)L2(Rn)|

=

∣∣∣∣cΨ ∫
Γ

τ(γ)(f, Ψγ)L2(Rn)(Ψγ , g)L2(Rn)dγ

∣∣∣∣
≤ cΨ

∫
Γ

|τ(γ)| |(f, Ψγ)L2(Rn)(Ψγ , g)L2(Rn)|dγ

≤ cΨ‖τ‖L∞(Γ )

∫
Γ

|(f, Ψγ)L2(Rn)| |(Ψγ , g)L2(Rn)| dγ

≤ cΨ‖τ‖L∞(Γ )

{∫
Γ

|(f, Ψγ)L2(Rn)|2dγ
}1/2{∫

Γ

|(Ψγ , g)L2(Rn)|2dγ
}1/2

= cΨ‖τ‖L∞(Γ )

{
‖f‖2L2(Rn)

cΨ

}1/2{‖g‖2L2(Rn)

cΨ

}1/2

= ‖τ‖L∞(Γ )‖f‖L2(Rn)‖g‖L2(Rn). (3.1)

Now, let τ ∈ L1(Γ ). Then for all functions f and g in L2(Rn),

|(Lτf, g)L2(Rn)|

=

∣∣∣∣cΨ ∫
Γ

τ(γ)(f, Ψγ)L2(Rn)(Ψγ , g)L2(Rn)dγ

∣∣∣∣
≤ cΨ

∫
Γ

|τ(γ)| |(f, Ψγ)L2(Rn)| |(Ψγ , g)L2(Rn)|dγ. (3.2)

198

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1051/mmnp/20149513
Downloaded from https://www.cambridge.org/core. Law Library, Osgoode Hall Law School, York University, on 05 Jan 2018 at 15:05:10, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1051/mmnp/20149513
https://www.cambridge.org/core


“LiWong˙mmnp2014˙5” — 2014/6/28 — 21:38 — page 199 — #6i
i

i
i

i
i

i
i

J. Li, M. W. Wong Localization Operators for Ridgelet Transforms

For γ = (a, u, b), we let Ψa be the function on R defined by

Ψa(y) = a−1/2Ψ(y/a), y ∈ R,

and we get

(f, Ψγ)L2(Rn)

=

∫
Rn

f(x)
1√
a
Ψa−1((u · x)− b) dx

=

∫ ∞
−∞

∫
Rn−1

f

tu+

n−1∑
j=1

vjsj

 1√
a
Ψa−1

u ·
tu+

n−1∑
j=1

vjsj

− b
 dv dt

=

∫ ∞
−∞

∫
Rn−1

f

tu+

n−1∑
j=1

vjsj

 1√
a
Ψa−1(t− b) dv dt

=

∫ ∞
−∞

1√
a
Ψa−1(t− b)


∫
Rn−1

f

tu+

n−1∑
j=1

vjsj

 dv

 dt

=

∫ ∞
−∞

1√
a
Ψ−a−1(b− t)(Ruf)(t) dt

=
1√
a

(Ψ−a−1 ∗ (Ruf))(b). (3.3)

Since ∥∥∥∥ 1√
a
Ψa−1

∥∥∥∥
L2(R)

= ‖Ψ‖L2(R), (3.4)

it follows from (3.2)–(3.4) and the Schwarz inequality that

|(Lτf, g)L2(Rn)|

≤ cΨ

∫ ∞
−∞

∫
Sn−1

∫ ∞
0

|τ(a, u, b)|
∣∣∣∣( 1√

a
Ψ−a−1 ∗ (Ruf)

)
(b)

∣∣∣∣∣∣∣∣( 1√
a
Ψ−a−1 ∗ (Rug)

)
(b)

∣∣∣∣ da

an+1
du db

= cΨ

∫ ∞
−∞

∫
Sn−1

∫ ∞
0

|τ(a, u, b)| ‖Ruf‖L2(R)‖Rug‖L2(R)‖Ψ‖2L2(R)
da

an+1
du db

= cΨ‖Ψ‖2L2(R)

∫ ∞
−∞

∫
Sn−1

∫ ∞
0

|τ(a, u, b)| ‖Ruf‖L2(R)‖Rug‖L2(R)
da

an+1
du db.

(3.5)

For all Schwartz functions f on Rn, we get by Plancherel’s formula

‖Ruf‖2L2(R) = ‖R̂uf‖2L2(R). (3.6)

Now, we note that the restriction theorem of the Fourier transform holds to the effect that∫ ∞
−∞
|f̂(ξu)|2dξ ≤

∫
Rn

|f̂(η)|2dη =

∫
Rn

|f(x)|2dx. (3.7)

Indeed, ∫
Rn

|f̂(η)|2dη =

∫
Rn−1

∫ ∞
−∞

∣∣∣∣∣∣f̂
ξu+

∞∑
j=1

vjsj

∣∣∣∣∣∣
2

dξ dv.
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Then there exists a vector v in Rn−1 such that

∫ ∞
−∞

∣∣∣∣∣∣f̂
ξu+

n−1∑
j=1

vjsj

∣∣∣∣∣∣
2

dξ ≤
∫
Rn

|f̂(η)|2dη.

For if this is not true, then for all v ∈ Rn−1,

∫ ∞
−∞

∣∣∣∣∣∣f̂
ξu+

n−1∑
j=1

vjsj

∣∣∣∣∣∣
2

dξ >

∫
Rn

|f̂(η)|2dη

and hence

∫
Rn

|f̂(η)|2dη =

∫
Rn−1

∫ ∞
−∞

∣∣∣∣∣∣f̂
ξu+

n−1∑
j=1

vjsj

∣∣∣∣∣∣
2

dξ dv

>

∫
Rn−1

∫
Rn

|f̂(η)|2dη dv =∞,

which is a contradiction. So, there exists a v in Rn−1 such that∫ ∞
−∞
|(M−∑n−1

j=1 vjsj
f)∧(ξu)|2dξ ≤

∫
Rn

|f̂(η)|2dη =

∫
Rn

|f(x)|2dx

and hence ∫ ∞
−∞
|f̂(ξu)|2dξ ≤

∫
Rn

|(M∑n−1
j=1 vjsj

f)(x)|2dx =

∫
Rn

|f(x)|2dx,

where
(M±

∑n−1
j=1 vjsj

f)(x) = e±ix·
∑n−1

j=1 vjsjf(x), x ∈ Rn.

By Theorem 2.1 and (3.7),

‖Ruf‖2L2(R) =

∫ ∞
−∞
|R̂uf(ξ)|2dξ

= (2π)n−1
∫ ∞
−∞
|f̂(ξu)|2dξ

≤ (2π)n−1‖f̂‖2L2(Rn)

= (2π)n−1‖f‖2L2(Rn). (3.8)

Thus, by (3.5) and (3.8),

|(Lτf, g)L2(R)| ≤ (2π)n−1cΨ‖Ψ‖2L2(R)‖f‖L2(Rn)‖g‖L2(Rn)‖τ‖L1(Γ )

and hence
‖Lτf‖L2(Rn) ≤ (2π)n−1cΨ‖Ψ‖2L2(R)‖τ‖L1(Γ )‖f‖L2(Rn).

Using the Riesz–Thorin theorem [18], we get

‖Lτf‖L2(Rn) ≤ ((2π)n−1cΨ‖Ψ‖2L2(R)‖f‖L2(Rn))
1/p‖f‖1−(1/p)L2(Rn) ‖τ‖Lp(Γ )

= ((2π)n−1cΨ‖Ψ‖2L2(R))
1/p‖τ‖Lp(Γ )‖f‖L2(Rn)

and the proof is complete. �
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4. Trace Class Localization Operators

For the sake of self-containedness, we give a brief recall of the basic results on trace class operators and
traces in [19,20]. Let A be a compact operator on a complex, separable and infinite-dimensional Hilbert
space X. Then (A∗A)1/2 is a compact and positive operator on X, where A∗ is the adjoint of A. Let
{ϕk : k = 1, 2, . . .} be an orthonormal basis of X consisting of eigenvectors of A, and for k = 1, 2, . . . , let
sk be the eigenvalue of (A∗A)1/2 corresponding to the eigenvector ϕk. Then we say that A is in the trace
class S1 if

∞∑
k=1

sk <∞.

If A is in S1, then for all orthonormal bases {ϕk : k = 1, 2, . . .} of X, the series
∑∞
k=1(Aϕk, ϕk) is

absolutely convergent and the sum is independent of the choice of the orthonormal basis {ϕk : k = 1, 2, . . .}
for X. We define the trace tr(A) by

tr(A) =

∞∑
k=1

(Aϕk, ϕk),

where {ϕk : k = 1, 2, . . .} is any orthonormal basis for X. It is a well-known result of Lidskii [12] that
the trace tr(A) of a trace class operator A is the sum of the eigenvalues of A, where the multiplicity of
each eigenvalue is taken into account. The following results can be found in [19].

Theorem 4.1. Let A : X → X be a positive operator such that

∞∑
k=1

(Aϕk, ϕk) <∞

for all orthonormal bases {ϕk : k = 1, 2, . . .} of X, where ( , ) is the inner product in X. Then A ∈ S1.

The following result is an immediate consequence of Theorem 3.1.

Theorem 4.2. Let τ ∈ Lp(Γ ), 1 ≤ p ≤ ∞. Then for all functions ϕ in the Schwartz space S, the
localization operator ϕLτϕ : L2(Rn)→ L2(Rn) is a bounded linear operator and

‖ϕLτϕ‖∗ ≤ ‖ϕ‖2L∞(Rn)((2π)n−1cΨ‖Ψ‖2L2(R))
1/p‖τ‖Lp(Γ ).

Theorem 4.3. Let τ/a ∈ L1(Γ ). Then for all functions ϕ in S, the localization operator ϕLτϕ :
L2(Rn)→ L2(Rn) is a trace class operator and

tr(ϕLτϕ) = cΨ

∫
Γ

τ(γ)‖ϕΨγ‖2L2(Rn)dγ.

Proof. We first assume that τ is a nonnegative real-valued function. Then for all functions f in L2(Rn),

(ϕLτϕf, f)L2(Rn)

= (Lτϕf, ϕf)L2(Rn)

= cΨ

∫
Γ

τ(γ)|(ϕf, Ψγ)L2(Rn)|2dγ

= cΨ

∫
Γ

τ(γ)|(f, ϕΨγ)L2(Rn)|2dγ.
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Since for γ = (a, u, b),

|(f, ϕΨγ)L2(Rn)|2

=

∣∣∣∣∫
Rn

f(x)ϕ(x)
1√
a
Ψ

(
(u · x)− b

a

)
dx

∣∣∣∣2

=
1

a

∣∣∣∣∣∣
∫ ∞
−∞

∫
Rn−1

f

tu+

n−1∑
j=1

vjsj

ϕ

tu+

n−1∑
j=1

vjsj

Ψ

(
t− b
a

)
dv dt

∣∣∣∣∣∣
2

≤ 1

a
‖Ψ‖2L∞(R)

∫ ∞
−∞

∫
Rn−1

∣∣∣∣∣∣f
tu+

n−1∑
j=1

vjsj

ϕ

tu+

n−1∑
j=1

vjsj

∣∣∣∣∣∣ dv dt
2

=
1

a
‖Ψ‖2L∞(R)

(∫
Rn

|f(x)ϕ(x)|dx
)2

≤ 1

a
‖Ψ‖2L∞(R)‖f‖

2
L2(Rn)‖ϕ‖

2
L2(Rn).

Therefore

(ϕLτϕf, f)L2(Rn) ≥ 0, f ∈ L2(Rn).

Thus, ϕLτϕ : L2(Rn) → L2(Rn) is a positive operator. Now, let {ϕk : k = 1, 2, . . .} be an orthonormal
basis for L2(Rn). Then

∞∑
k=1

(ϕLτϕϕk, ϕk)L2(Rn)

=

∞∑
k=1

(Lτϕϕk, ϕϕk)L2(Rn)

= cΨ

∫
Γ

τ(γ)

∞∑
k=1

|(ϕϕk, Ψγ)L2(Rn)|2dγ

= cΨ

∫
Γ

τ(γ)

∞∑
k=1

|(ϕk, ϕΨγ)L2(Rn)|2dγ

= cΨ

∫
Γ

τ(γ)‖ϕΨγ‖2L2(Rn)dγ

≤ cΨ

(∫
Γ

τ(γ)

a
dγ

)
‖Ψ‖2L∞(R)‖ϕ‖

2
L2(Rn) <∞.

Now let τ be a complex-valued function in L1(Γ ). Let τ = τ1 + iτ2. Write

τ+1 − τ
−
1

and

τ+2 − τ
−
2 ,

where for j = 1, 2,

τ+j = max(τj , 0)

and

τ−j = −min(τj , 0),
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we can conclude that ϕLτϕ : L2(Rn)→ L2(Rn) is a trace class operator. Finally, let {ϕk : k = 1, 2, . . .}
be an orthonormal basis for L2(Rn). Then

tr(ϕLτϕ) = cΨ

∫
Γ

τ(γ)

∞∑
k=1

|(ϕk, ϕΨγ)L2(Rn)|2dγ

= cΨ

∫
Γ

τ(γ)‖ϕΨγ‖2L2(Rn)dγ,

as asserted. �
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