
Curvature of the Heisenberg Group

Bartek Ewertowski and M. W. Wong

Abstract. We compute the Riemannian curvature of the Heisenberg group
and then contract it to the sectional curvature, Ricci curvature and the scalar
curvature of the Heisenberg group. The main result so obtained is that the
Heisenberg group is a space of constant positive scalar curvature.
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1. The Heisenberg Group

If we identify R2 with the complex plane C via the obvious identification

R2 3 (x, y)↔ z = x+ iy ∈ C,

and we let
H1 = C× R,

then H1 becomes a noncommutative group when equipped with the multiplication
· given by

(z, t) · (w, s) =
(
z + w, t+ s+

1
4

[z, w]
)
, (z, t), (w, s) ∈ H1,

where [z, w] is the symplectic form of z and w defined by

[z, w] = 2 Im (zw).

In fact, H1 is a unimodular Lie group on which the Haar measure is just the
ordinary Lebesgue measure dz dt.
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Let h be the Lie algebra of left-invariant vector fields on H1. Then a basis for
h is given by X, Y and T , where

X =
∂

∂x
+

1
2
y
∂

∂t
,

Y =
∂

∂y
− 1

2
x
∂

∂t

and

T =
∂

∂t
.

It can be checked easily that
[X,Y ] = −T

and all other commutators among X, Y and T are equal to 0.
The aim of this paper is to prove that the scalar curvature of the Heisenberg

group is a positive number. This is achieved by contracting from the Riemannian
curvature to the scalar curvature through the sectional curvature and the Ricci
curvature. The interest in curvature of the Heisenberg group H1 stems from the
fact [?] that H1 can be thought of as the three-dimensional surface that is the
boundary of the four-dimensional Siegel domain, so curvature of the Heisenberg
group H1 may be of some interest in physics.

Results on curvature of the Heisenberg group exist in the literature with a
host of different notation and convention. See, for instance, [2, 6, 7]. This paper
is another attempt to give a self-contained, elementary and streamlined account
based on the notions that can be found in any graduate textbook on Riemannian
geometry.

Since indices permeate Riemannian geometry, we find it convenient to label
the vector fields X, Y and T by X1, X2 and X3 respectively.

2. The Riemannian Metric

We begin with the fact that there exists a left-invariant Riemannian metric g on
H1 that turns X1 , X2 and X3 into an orthonormal basis for h with respect to an
inner product denoted by ( , ). In fact,

g(x, y, t) =


1 + (y2/4) −xy/4 −y2/2

−xy/4 1 + (x2/4) x/2

−y2/2 x/2 1


for all (x, y, t) ∈ H1. Equivalently, the arclength variable ds is given by

ds2 = dx2 + dy2 +
(
dt− ydx− xdy

2

)2

.
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3. The Levi–Civita Connection

A connection ∇ on H1 is a mapping

h× h 3 (X,Y ) 7→ ∇XY ∈ h

such that

• ∇X(Y + Z) = ∇XY +∇XZ,
• ∇X+Y Z = ∇XZ +∇Y Z,
• ∇X(fY ) = X(f)Y + f∇XY,
• ∇fXY = f∇XY

for all vector fields X, Y and Z in h and all C∞ real-valued function f on H1.
The torsion T of the connection ∇ is a mapping that assigns to two vector fields
X and Y in h another vector field T (X,Y ) in h given by

T (X,Y ) = ∇XY −∇Y X − [X,Y ].

A connection ∇ on H1 is said to be compatible with the Riemannian metric g on
H1 if

X(Y,Z) = (∇XY,Z) + (Y,∇XZ) (3.1)

for all vector fields X Y and Z in h.

Remark 3.1. In (3.1), (Y,Z) is a real-valued function, so X(Y, Z) is also a real-
valued function, and the equation expresses an equality of real-valued functions.

The following result is crucial.

Theorem 3.2. There exists a unique affine connection ∇ on H1 such that ∇ is
torsion-free, i.e.,

T (X,Y ) = 0

for all vector fields X and Y in h and ∇ is compatible with the Riemannian metric
g on H1.

Proof The metric g is given by

gij = (Xi, Xj), i, j = 1, 2, 3.

By compatibility,

Xigjk = (∇XiXj , Xk) + (Xj ,∇XiXk), i, j, k = 1, 2, 3. (3.2)

Since ∇ is torsion-free, it follows that

∇XiXj −∇XjXi = [Xi, Xj ], i, j = 1, 2, 3.

Permuting the indices in (3.2), we obtain

Xjgik = (∇XjXi, Xk) + (Xi,∇XjXk) (3.3)

Xkgij = (∇Xk
Xi, Xj) + (Xi,∇Xk

Xj). (3.4)
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By (3.2), (3.3) and (3.4), we get

Xigjk +Xjgik −Xkgij

= 2(∇Xi
Xj , Xk)− ([Xi, Xj ], Xk) + ([Xj , Xk], Xi)− ([Xk, Xi], Xj).

(3.5)

Thus, the uniquness of ∇ follows. For the existence, For i, j, k = 1, 2, 3, let

Γk
ij =

1
2

3∑
l=1

(Xigjl +Xjgil −Xlgij)glk,

where [gjk] is the inverse of [gij ], and we define ∇Xi
Xj by

∇Xi
Xj =

3∑
k=1

Γk
ijXk.

�

The connection alluded to in Theorem 3.2 is known as the Levi-Civita con-
nection. The functions Γk

ij are called the Christoffel symbols. We shall work with
the Levi–Civita connection from now on.

4. The Riemannian Curvature

Let ∇ be the Levi–Civita connection on H1. Then the Riemannian curvature R on
H1 is the mapping that assigns three vector fields X, Y and Z in h another vector
field in h denoted by R(X,Y )Z and given by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. (4.1)

Remark 4.1. An intuitive way to think of the Riemannian curvature R is that it
measures the deviation of ∇X∇Y −∇Y∇X from ∇[X,Y ]. It should be noted that
the opposite sign of R is also common in the literature. For example, the sign used
in [5] is different from the one used in this paper

The Riemannian curvature has many symmetries as given by the following
theorem, which can be proved easily using (4.1).

Theorem 4.2. Let X, Y Z and W be in h. Then we have the following symmetries.

• R(X,Y )Z +R(Y,X)Z = 0,
• (R(X,Y )Z,W ) + (R(X,Y )W,Z) = 0,
• R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0,
• (R(X,Y )Z,W ) = (R(Z,W )X,Y ).

In order to perform computations on the Heisenberg group H1, the following
theorem is very useful.
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Theorem 4.3. For all vector fields X, Y and Z in h, we have

(∇XY,Z) =
1
2
{(Z, [X,Y ])− (Y, [X,Z])− (X, [Y,Z])}.

Proof By compatibility,

X(Y,Z) = (∇XY,Z) + (Y,∇XZ) = 0,

Y (X,Z) = (∇Y X,Z) + (X,∇Y Z) = 0,
Z(X,Y ) = (∇ZX,Y ) + (X,∇ZY ) = 0.

Since ∇ is torsion-free, we use the Jacobi identity to the effect that

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

to get
0 = 2(∇XY,Z)− (Z, [X,Y ]) + (Y, [X,Z]) + (X, [Y,Z]),

as asserted. �

The following two theorems can be proved by direct computations.

Theorem 4.4. The Levi-Civita connection ∇ is given by

∇X1X1 = 0, ∇X1X2 = − 1
2X3, ∇X1X3 = 1

2X2,

∇X2X1 = 1
2X3, ∇X2X2 = 0, ∇X2X3 = − 1

2X1,

∇X3X1 = 1
2X2, ∇X3X2 = − 1

2X1, ∇X3X3 = 0.

We can now give a useful formula for the Riemannian curvature.

Theorem 4.5. For all vector fields X, Y and Z in h,

R(X,Y )Z = −3
4

((Y,Z)X − (X,Z)Y )

+(Y,X3)(Z,X3)X − (X,X3)(Z,X3)Y
+(X,X3)(Y,Z)X3 − (Y,X3)(X,Z)X3.

5. The Sectional Curvature

Let X and Y be two orthonormal vector fields in h. Then X and Y determine a
plane in h. Using left translations, we get a plane bundle on H1. Let (z, t) ∈ H1.
Then we can find a neighborhood U of the origin in T(z,t)H1 and a neighborhood of
(z, t) in H1 such that the exponential mapping exp : U → N is a diffeomorphism.
As such, the plane (a subspace of T(z,t)H1) induces a submanifold of H1 locally
and its curvature is given by the so-called sectional curvature that we can now
define.

Definition 5.1. Let X and Y be orthonormal vector fields in h. Then the sectional
curvature S(X,Y ) determined by X and Y is a number given by

S(X,Y ) = (R(X,Y )X,Y ).
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We can now compute the sectional curvature of the Heisenberg group.

Theorem 5.2. Let X and Y be orthonormal vector fields in h. Then

S(X,Y ) =
3
4
− (X,X3)2 − (Y,X3)2.

Proof By Theorem 4.5,

R(X,Y )X

= −3
4

[(Y,X)X − (X,X)Y ]

+(Y,X3)(X,X3)X − (X,X3)(X,X3)Y
+(X,X3)(Y,X)X3 − (Y,X3)(X,X)X3.

So,

(S(X,Y ) = (R(X,Y )X,Y ) =
3
4
− (X,X3)2 − (Y,X3)2.

�

6. The Ricci Curvature

Let X and Y be vector fields in h. Then we consider the linear mapping

h 3 Z 7→ R(X,Z)Y ∈ h.

We denote this mapping by M(X,Y ) : h → h and we define the Ricci curvature
r(X,Y ) of the Heisenberg group by

r(X,Y ) = trM(X,Y ).

Theorem 6.1. Let X and Y be vector fields in h. Then the Ricci curvature of
r(X,Y ) of the Heisenberg group is given by

r(X,Y ) =
1
2

(X,Y )− (X,X3)(Y,X3).

Proof Using the orthonormal basis X1, X2 and X3 for H1, we get by means of
Theorem 4.5

R(X,Xj)Y

= −3
4

[(Xj , Y )X − (X,Y )Xj ]

+(Xj , X3)(Y,X3)X − (X,X3)(Y,X3)Xj

+(X,X3)(Xj , Y )X3 − (Xj , X3)(X,Y )X3.



Curvature of the Heisenberg Group 7

So, for j = 1, 2, 3,

(R(X,Xj)Y,Xj)

= −3
4

[(Xj , Y )(X,Xj)− (X,Y )]

+(Xj , X3)(Y,X3)(X,Xj)− (X,X3)(Y,X3)
+(X,X3)(Xj , Y )(X3, Xj)− (Xj , X3)(X,Y )(X3, Xj).

Therefore by Parseval’s identity,

trM(X,Y )

= −3
4

[(X,Y )− 3(X,Y )]

+(X,X3)(Y,X3)− 3(X,X3)(Y,X3)
+(X,X3)(Y,X3)− (X,Y )

=
1
2

(X,Y )− 5
4

(X,X3)(Y,X3),

as required. �

By Theorem 6.1, the Ricci curvature is the mapping Ric : h→ h given by

Ric(X) =
1
2
X − (X,X3)X3

for all X in h.

7. The Scalar Curvature

The scalar curvature κ of the Heisenberg group is defined by

κ = tr (Ric).

Theorem 7.1. The scalar curvature κ of the Heisenberg group is given by

κ =
1
2
.

Proof Let X1, X2 and X3 be an orthonormal basis for H1. Then

κ = tr (Ric)

=
3∑

j=1

(RicXj , Xj)

=
1
2

3∑
j=1

(Xj , Xj)−
3∑

j=1

(Xj , X3)2

=
3
2
− 1 =

1
2
.

�
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