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Abstract. Pseudo-differential operators are defined on the affine group using
the Fourier inversion formula for the Fourier transform on the affine group.
The Weyl transform on the affine group is given and so are the L2-Lp estimates
for pseudo-differential operators on the affine group.
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1. Introduction

It is a well-known fact from [15] that pseudo-differential operators on Rn are
based on the Plancherel formula for the Fourier transform on Rn. The Plancherel
formula gives rise to the Fourier inversion formula, which says that the identity
operator for L2(Rn) can be expressed in terms of the Fourier transform on Rn.
The Fourier inversion formula, albeit useful in many situations, gives a perfect
symmetry, namely, the identity operator. By inserting a symbol, which is a suitable
function on the phase space Rn ×Rn, we break the symmetry and obtain a much
more interesting and meaningful operator with many applications in sciences and
engineering. Such an operator is a pseudo-differential operator on Rn. To extend
pseudo-differential operators to other settings, we first observe that Rn is a group
and its dual is also Rn. So, it is natural to extend pseudo-differential operators
from Rn to other groups with explicit dual groups and Fourier inversion formulas
for the Fourier transforms on the groups. Such a program has been carried out in
some detail for S1, Z, ZN , finite abelian groups, compact groups and Heisenberg
groups [1, 2, 7, 8, 9, 11] among others.
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The aim of this paper is to move the program forward with the affine group.
In Section 2, we recall the basics of the affine group. The Schatten von-Neumann
classes that we need to study pseudo-differential operators on affine groups are
recalled in Section 3. The Fourier analysis that we need in this paper are given in
Section 4. Good references are [5, 13]. In Section 5, we give the Fourier transform
on the affine group and show that it is a Weyl transform on L2(R) [12]. L2-Lp

estimates for pseudo-differential operators on the affine group are given in Sections
6 and 7.

2. The Affine Group

Let U be the upper half plane given by

U = {(b, a) : b ∈ R, a > 0}.

Then we define the binary operation · on U by

(b1, a1) · (b2, a2) = (b1 + a1b2, a1a2)

for all points (b1, a1) and (b2, a2) in U . With respect to the multiplication ·, U is a
non-abelian group in which (0, 1) is the identity element and the inverse element
of (b, a) is

(
− b
a ,

1
a

)
for all (b, a) in U . We call U the affine group. The left and right

Haar measures on U are given by

dµ =
db da

a2

and

dν =
db da

a

respectively. Let H2
+(R) be the subspace of L2(R) defined by

H2
+(R) = {f ∈ L2(R) : supp(f̂) ⊆ [0,∞)},

where supp(f̂) is the set of every x in R for which there is no neighborhood of x
on which f̂ is equal to zero almost everywhere. Similarly, we define H2

−(R) to be
the subspace of L2(R) by

H2
−(R) = {f ∈ L2(R) : supp(f̂) ⊆ (−∞, 0]}.

Obviously, H2
+(R) and H2

−(R) are closed subspaces of L2(R).
Let π± : U → U(H2

±(R)) be mappings defined by

(π±(b, a)f)(x) =
1√
a
f

(
x− a
b

)
, x ∈ R,

for all points (b, a) in U and all functions f in H2
±(R). It can be shown that

π± : U → U(H2
±) are irreducible and unitary representations of U on H2

±(R).
Details of the affine group and its representations can be found in [5, 13].
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For a geometric understanding of the affine group, we look at the set G of all
affine mappings given by

G = {Tb,a : R 3 x 7→ Tb,ax = ax+ b ∈ R, b ∈ R, a > 0}.
G is a group with respect to the composition of mappings. Computing explicitly
the composition of the mappings Tb1,a1 and Tb2,a2 in G, we get for all x ∈ R,

(Tb1,a1 ◦ Tb2,a2)(x) = Tb1,a1(Tb2,a2x) = Tb1,a1(a2x+ b2)
= a1a2x+ b1 + a1b2 = Tb1+a2b1,a1a2x.

Therefore
Tb1,a1 ◦ Tb2,a2 = Tb1+a1b2,a1a2 .

Thus, the group U is isomorphic to G and this is precisely the justification for
calling U the affine group.

We can give another way to look at the affine group. The set R of all positive
numbers is clearly an additive group isomorphic to the group {Tb,1 : b ∈ R}
of translations, which we denote by N . That N is a normal subgroup of G is
easy to check. The set R+ of all positive real numbers is a group with respect to
multiplication and is isomorphic to the group {T0, a : a > 0} of dilations, which
we denote by A. Since N ∩A = {T1,0}, it follows that the affine group G is given
by

G = AN,

and we call G the internal semi-direct product of A and N and we write

G = AnN

or
G = R+ n R.

More information about semi-direct products can be found in Section 5.5 of the
book [4].

It should also be mentioned that the affine group is closely related to the
special linear group SL(2, R) given by

SL (2,R) =
{[

a b
c d

]
: a, b, c, d ∈ R, ad− bc 6= 0

}
.

By the Iwasawa decomposition, we can write

SL (2,R) = KAN,

where

K =
{[

cos θ − sin θ
sin θ cos θ

]
: θ ∈ R

}
,

A =
{[

α 0
0 1/α

]
: α > 0

}
and

N =
{[

1 β
0 1

]
: β ∈ R

}
.
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The group AN is in fact the affine group. See [6] and page 136 of the book [14].

3. Schatten-von Neumann Classes

Let X be an infinite-dimensional, separable and complex Hilbert space with inner
product ( , )X and norm ‖ ‖X . Let A : X → X be a compact operator. Then√
A∗A : X → X is a positive and compact operator. Hence the spectral theorem

gives an orthonormal basis {ϕk : k = 1, 2, . . . } for X consisting of eigenvectors of√
A∗A. For k = 1, 2, . . . , let sk be the eigenvalue of

√
A∗A corresponding to the

eigenvector ϕk. Then for 1 ≤ p <∞, we say that A is in the Schatten von-Neumann
class Sp if

∞∑
k=1

spk <∞.

If A ∈ Sp, then the Schatten-von Neumann norm ‖A‖Sp of A is defined by

‖A‖Sp
=

( ∞∑
k=1

spk

)1/p

.

By convention, S∞ is taken to be the C∗-algebra of all bounded linear operators
on X and the norm in S∞ is simply the operator norm ‖ ‖∗.

4. Fourier Analysis on the Affine Group

We give in this section the Fourier analysis on the affine group emphasizing the
Fourier transform, the Plancherel formula and the Fourier inversion formula. To
this end, we find it convenient to reformulate the irreducible and unitary repre-
sentations of the affine group U on U(H2

±(R)). Let

R+ = [0,∞)

and
R− = (−∞, 0].

Then we look at the equivalents of π+ : U → U(H2
+(R)) and π− : U → U(H2

−(R))
denoted by, respectively, ρ+ : U → U(L2(R+)) and ρ− : U → U(L2(R−)), and
given by

(ρ+(b, a)u)(s) = a1/2e−ibsu(as), s ∈ R+,

for all u ∈ L2(R+), and

(ρ−(b, a)v)(s) = a1/2e−ibsv(as), s ∈ R−,
for all v ∈ L2(R−). For all ϕ ∈ L2(R±), we define the functions D±ϕ on R± by

(D±ϕ)(s) = |s|1/2ϕ(s), s ∈ R±.
The unbounded linear operators D± on L2(R±) are known as the Duflo–Moore
operators [3].
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Let f ∈ L2(U). Then we define the Fourier transform f̂ on {ρ+, ρ−} by

(f̂(ρ±)ϕ)(s) =
∫ ∞

0

∫ ∞
−∞

f(b, a)(ρ±(b, a)D±ϕ)(s)
db da

a2
, s ∈ R±,

for all ϕ ∈ L2(R±). We have the Plancherel formula to the effect that

‖f̂(ρ+)‖2S2
+ ‖f̂(ρ−)‖2S2

= ‖f‖2L2(U),

where ‖ ‖S2 is the norm in the Hilbert space S2 of all Hilbert-Schmidt operators
on L2(R).

The Fourier inversion formula states that for all f ∈ L2(U), we get

f(b, a) = tr(f̂(ρ+)ρ+(b, a)∗) + tr(f̂(ρ−)ρ−(b, a)∗)

for all (b, a) ∈ U .
We find it convenient to denote {ρ+, ρ−} by {±}. Let σ : U×{±} → B(L2(R))

be a mapping, where B(L2(R)) is the C∗-algebra of all bounded linear operators
on L2(R). Then for all f ∈ L2(U), we define Tσf formally to be the function on
U by

(Tσf)(b, a) =
∑
j=±

tr (f̂(ρj)ρj(b, a)∗σ(b, a, j)), (b, a) ∈ U.

We call Tσ the pseudo-differential operator on the affine group U corresponding
to the operator-valued symbol σ.

5. The Fourier Transform on the Affine Group

Let f ∈ L2(U). Then for all ϕ ∈ L2(R+), we get for all s ∈ (0,∞),

(f̂(ρ+)ϕ)(s) =
∫ ∞
−∞

∫ ∞
0

f(b, a)a1/2e−ibs(as)1/2ϕ(as)
da db

a2
.

Let as = t. Then da = dt
s and we have

(f̂(ρ+)ϕ)(s)

=
∫ ∞
−∞

∫ ∞
0

f

(
b,
t

s

)(
t

s

)1/2

e−ibst1/2ϕ(t)s
dt db

t2

=
∫ ∞
−∞

∫ ∞
0

f

(
b,
t

s

)
s1/2e−ibsϕ(t)

dt db

t

=
∫ ∞

0

Kf
+(s, t)ϕ(t) dt,

where

Kf
+(s, t) =

√
s

t

∫ ∞
−∞

f

(
b,
t

s

)
e−ibsdb =

√
s

t
(2π)1/2(F1f)

(
s,
t

s

)
for 0 < s, t < ∞, where F1f denotes the Fourier transform of f with respect to
the first variable.
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Similarly, for all ϕ ∈ L2(R−), we obtain for all s ∈ (−∞, 0),

(f̂(ρ−)ϕ)(s) =
∫ 0

−∞
Kf
−(s, t)ϕ(t) dt,

where

Kf
−(s, t) =

√
|s|
|t|

(2π)1/2(F1f)
(
s,
t

s

)
for −∞ < s, t < 0.

Let f ∈ L2(U). Then we define the bounded linear operator f̂(ρ) : L2(R)→
L2(R) by

f̂(ρ)ϕ = f̂(ρ+)ϕ+ + f̂(ρ−)ϕ−,

where

ϕ± = ϕχR± .

Here,

χR±(s) =
{

1, s ∈ R±,
0, s /∈ R±.

Thus, we have the following result.

Theorem 5.1. Let f ∈ L2(U). Then for all ϕ ∈ L2(R),

(f̂(ρ)ϕ)(s) =
∫ ∞
−∞

Kf (s, t)ϕ(t) dt, s ∈ R,

where

Kf (s, t) =


Kf

+(s, t),
Kf
−(s, t),

0,
0,

s > 0, t > 0,
s < 0, t < 0,
s > 0, t < 0,
s < 0, t > 0.

(5.1)

That the Fourier transform on the affine group is a Weyl transform on L2(R)
is the content of the following theorem. First we recall the twisting operator T in
[12] given by

(Tf)(x, y) = f
(
x+

y

2
, x− y

2

)
, x, y ∈ R,

for all measurable functions f on R× R.

Theorem 5.2. Let f ∈ L2(U). Then for all ϕ ∈ L2(R),

f̂(ρ)ϕ = Wσf
ϕ, ϕ ∈ L2(R),

where

σf (x, ξ) = (2π)−1/2(F2TK
f )(x, ξ), x, ξ ∈ R.
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6. L2 Boundedness

Theorem 6.1. Let σ : U × {±} → Sp be such that

∑
j=±

∫ ∞
0

∫ ∞
−∞
‖σ(b, a, j)‖2Sp

db da

a2
<∞,

where 1 ≤ p ≤ 2. Then Tσ : L2(U) → L2(U) is a bounded linear operator. More-
over,

‖Tσ‖∗ ≤

∑
j=±

∫ ∞
0

∫ ∞
−∞
‖σ(b, a, j)‖2Sp

db da

a2


1/2

,

where ‖ ‖∗ is the norm in the C∗-algebra of all bounded linear operators on L2(R).

Proof. Let f ∈ L2(U). Then using Minkowski’s inequality in integral form, we get

‖Tσf‖L2(U)

=
{∫ ∞

0

∫ ∞
−∞
|(Tσf)(b, a)|2 db da

a2

}1/2

=


∫ ∞

0

∫ ∞
−∞

∣∣∣∣∣∣
∑
j=±

tr (f̂(ρj)ρj(b, a)∗σ(b, a, j))

∣∣∣∣∣∣
2

db da

a2


1/2

≤
∑
j=±

{∫ ∞
0

∫ ∞
−∞
|tr (f̂(ρj)ρj(b, a)∗σ(b, a, j))|2 db da

a2

}1/2

. (6.1)

For 1 ≤ p ≤ q ≤ ∞, it follows from the definition of the Schatten-von Neumann
classes that

Sp ⊆ Sq

and

‖A‖Sq
≤ ‖A‖Sp

, A ∈ Sp.



8 Aparajita Dasgupta and M. W. Wong

Thus, it follows from (6.1) that

‖Tσf‖L2(U)

≤
∑
j=±

{∫ ∞
0

∫ ∞
−∞
‖f̂(ρj)‖2S2

‖σ(b, a, j)‖2S2

db da

a2

}1/2

≤
∑
j=±

{∫ ∞
0

∫ ∞
−∞
‖f̂(ρj)‖2S2

‖σ(b, a, j)‖2Sp

db da

a2

}1/2

=
∑
j=±
‖f̂(ρj)‖S2

{∫ ∞
0

∫ ∞
−∞
‖σ(b, a, j)‖2Sp

db da

a2

}1/2

≤

∑
j=±
‖f̂(ρj)‖2S2


1/2∑

j=±

∫ ∞
0

∫ ∞
−∞
‖σ(b, a, j)‖2Sp

db da

a2


1/2

=

∑
j=±

∫ ∞
0

∫ ∞
−∞
‖σ(b, a, j)‖2Sp

db da

a2


1/2

‖f‖L2(U).

�

7. L2-Lp Estimates, 2 ≤ p ≤ ∞

Theorem 7.1. Let σ : U × {±} → Sp′ be such that

∑
j=±

∫ ∞
0

∫ ∞
−∞
‖σ(b, a, j)‖pSp′

db da

a2
<∞,

where 2 ≤ p < ∞ and p′ is the conjugate index of p, i.e., 1
p + 1

p′ = 1. Then
Tσ : L2(U)→ Lp(U) is a bounded linear operator and

‖Tσ‖B(L2(Rn),Lp(Rn)) ≤


∑
j=±

∫ ∞
0

∫ ∞
−∞
‖σ(b, a, j)‖pSp′

db da

a2

2/p


1/2

,

where ‖ ‖B(L2(Rn),Lp(Rn)) is the norm in the Banach space of all bounded linear
operators from L2(Rn) into Lp(Rn).
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Proof. Let f ∈ Lp(U). Then using Minkowski’s inequality in integral form, we get

‖Tσf‖Lp(U)

=
{∫ ∞

0

∫ ∞
−∞
|(Tσf)(b, a)|p db da

a2

}1/p

=


∫ ∞

0

∫ ∞
−∞

∣∣∣∣∣∣
∑
j=±

tr (f̂(ρj)ρj(b, a)∗σ(b, a, j))

∣∣∣∣∣∣
p

db da

a2


1/p

≤
∑
j=±

{∫ ∞
0

∫ ∞
−∞
|tr (f̂(ρj)ρj(b, a)∗σ(b, a, j))|p db da

a2

}1/p

. (7.1)

Now, using Hölder’s inequality and the Plancherel theorem, it follows from (7.1)
that

‖Tσf‖Lp(U)

≤
∑
j=±

{∫ ∞
0

∫ ∞
−∞
‖f̂(ρj)‖pSp

‖σ(b, a, j)‖pSp′

db da

a2

}1/p

=
∑
j=±
‖f̂(ρj)‖Sp

{∫ ∞
0

∫ ∞
−∞
‖σ(b, a, j)‖pSp′

db da

a2

}1/p

≤
∑
j=±
‖f̂(ρj)‖S2

{∫ ∞
0

∫ ∞
−∞
‖σ(b, a, j)‖pSp′

db da

a2

}1/p

=

∑
j=±
‖f̂(ρj)‖2S2


1/2

∑
j=±

∫ ∞
0

∫ ∞
−∞
‖σ(b, a, j)‖pSp′

db da

a2

2/p


1/2

and this completes the proof. �

Remark 7.2. The conclusion of Theorem 7.1 can be expressed in the form

‖Tσ‖B(L2(Rn),Lp(Rn)) ≤
∥∥∥‖‖σ(·, ·, j)‖Sp′‖Lp(U)

∥∥∥
l2(±)

, 2 ≤ p <∞.

We fill in the endpoint p =∞ in the following theorem.

Theorem 7.3. Let σ : U × {±} → S1 be such that∥∥∥‖‖σ(·, ·, j)‖S1‖L∞(U)

∥∥∥
l2(±)

<∞.

Then Tσ : L2(U)→ L∞(U) is a bounded linear operator and

‖Tσ‖B(L2(Rn),L∞(Rn)) ≤
∥∥∥‖‖σ(·, ·, j)‖S1‖L∞(U)

∥∥∥
l2(±)

.
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Proof. Let f ∈ L∞(U). Then by Minkowski’s inequality,

‖Tσf‖L∞(U)

=

∥∥∥∥∥∥
∑
j=±

tr (f̂(ρj)ρj(·, ·)∗σ(·, ·, j))

∥∥∥∥∥∥
L∞(U)

≤
∑
j=±
‖tr (f̂(ρj)ρj(·, ·)∗σ(·, ·, j))‖L∞(U). (7.2)

Using Hölder’s inequality and Plancherel’s theorem, it follows from (7.2) that

‖Tσf‖L∞(U)

≤
∑
j=±

∥∥∥‖f̂(ρj)‖S∞‖σ(·, ·, j)‖S1

∥∥∥
L∞(U)

=
∑
j=±
‖f̂(ρj)‖S∞ ‖‖σ(·, ·, j)‖S1‖L∞(U)

≤
∑
j=±
‖f̂(ρj)‖S2 ‖‖σ(·, ·, j)‖S1‖L∞(U)

≤

∑
j=±
‖f̂(ρj)‖2S2


1/2∑

j=±
‖‖σ(·, ·, j)‖S1‖

2
L∞(U)


1/2

=

∑
j=±
‖‖σ(·, ·, j)‖S1‖

2
L∞(U)


1/2

‖f‖L2(U).

�
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