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1 Pseudo-Differential Operators on Zy

Pseudo-differential operators on R" have been well studied, e.g., in [10]
among others, and are based on the Fourier inversion formula for the Fourier
transform on R™. An analogous theory is then developed in, for instance,
[6, 7] when R™ is replaced by the unit circle centered at the origin. Pseudo-
differential operators on S! based on the Fourier inversion formula for Fourier
series can be thought of as periodic pseudo-differential operators. Discretiz-
ing pseudo-differential operators on S has prompted very recent research
into the connections of pseudo-differential operators with modular arith-
metic in number theory and finite groups. See, for instance, [3, 4, 5].

Let Zny = {0,1,..., N—1} be the addititive group, where N is a positive
integer greater than or equal to 2. and the group law is addition modulo
N. Pseudo-differential operators on Zy have been studied in [3, 4]. We first
recall the notation and the results therein that we need in this paper. A

2(0)
2(1)

function z : Zny — C is completely specified by ‘ . Thus, we

z(N —1)
think of the set of all n-tuples with complex entries as functions on Zy and
we denote it by L*(Zy). It is a finite-dimensional Hilbert space in which
the inner product (, ) and norm || || are defined by

(z.0) = 3 2ln)u)
and .
l2l* = (z,2) = Y lz(n)?
2(0) w(0)
z(1 w(l _
for all z = _ and w = ‘ in L*(Zy).
z(N —1) w(N —1)



An obvious orthonormal basis for L?(Zy) is S = {eg,€1,-..,€ex_1} de-
fined by

0

where €, has 1 in the m' position and zeros elsewhere. Another orthonor-
mal basis for L*(Zy) is {eq, €1, ...,ex_1} with

em(N —1)

and

1 .
em(n) = ﬁ(z?mmn/N, n=0,1,...,N—1.

The Fourier transform 2 of z € L*(Zy) is defined by

2(0)
. z(1)
z= .
Z(N —1)
with
N-1
Z(m) = Z z(n)e Zmmn/N - m =0,1,...,N — 1.
n=0
Let F'= {F,, Fi,...,Fy_1} be the basis for L?(Zy) defined by
1
£, = m=01,... N-1.



Then for z and w in L?(Zy), we have the Plancherel formula given by

I, .
(Za ’U}) - N(Za ’U})
and the Fourier inversion formula to the effect that
N—1
z = zZ(m) Fy,.
m=0

Let o be a function on the phase space Zy x Zy. Then the pseudo-
differential operator T, on Zy is defined by

(Ty2)(n) = i: o(n,m)z(m)F,(n), n=0,1,...,

m=0

for all z € L*(Zy). The matrix (T,)r of T, with respect to the basis F given
by

N1,

F:{F07F17"'7FN71}

is

(T,)r
(F10)(0,0) (Fio)(N —1,0) (Fio)(1,0)
_ i (Fio)(1,1) (Fr0)(0,1) (Fio)(2,1)
N : : : :
(FIo)(N—1,N—1) (Fa)(N-2,N—1) --- (Fio)(O,N 1)
— L (F0)m = m 1) o<mmen1,

N
where Fi;o denotes the Fourier transform of o with respect to the first

variable. And for separable symbols,

(TO')F —
o1(0) 72(0) go(1) g9(N — 1)
N .
o (N — 1) Go(1)  62(2) -+ 65(0)



Let Fy0 be the Fourier transform of ¢ with respect to the second variable.
Then the matrix (7,)s of the pseudo-differential operator T, on L*(Zy)

with respect to the basis S = {€g, €1,...,€exy_1} has the form
(TO')S
(F20)(0,0) (F20)(0,1) oo (Fo)(0,N —1)
1 | (Fo)(1,N —1) (Fo0)(1,0) o (Fo) (1, N —2)
= . . .
(Foo)(N —1,1) (Feo)(N —1,2) -+ (Fo0)(N —1,0)
1
=~ (F20)(m, 7 —m))ocmncn-1.

Results on the determinants, condition numbers and computational com-
plexity for matrix representations in terms of the basis S are similar to those
in terms of the basis F', so we give the results in this paper using the basis
F only.

The aim is to analyze the structure of the matrix of 7,, where o is a
separable symbol. In Section 2, we give the determinants of the pseudo-
differential operators on Zy using the basis F'. In Section 3, we give upper
bounds for the condition numbers. In Section 4, we give the computational
complexity, in terms of the bases F, of computing T,z, where z € L*(Zy).
Numerical experiments are given in Section 5.

2 Determinants
Let o be a separable function on Zy X Zy, i.e.,
O'(TL, ’ITL) = Ul(n)UZ(m)a n,mec ZNa

where o1 and o, are functions on Zy. Then the matrix (7, ) can be decom-
posed into the product of a diagonal matrix (7,,)r and a circulant matrix
(Ty,) - In fact,

(TU)F = _(Ttrz)F(Tm)Fa

1
N



where

0'2(0)
(T = 7
o9(N — 1)
and
a1(0) o (N—=1) --- &1(1)
(To)r a1(1) 61.(0) 71(2)
o1(N—=1) 61(N—-2) --- 51(0)

In fact, the entry in the j%* row and k™ column of (T},)p is

o1(j— k), 0<jk<N-1.

The properties of circulant matrices can be found in [2, 9].
In particular, the eigenvalues of (7,,)r are

01(0)7 01(1)7 B 7UI(N - 1)7
where multiplicities are taken into account. The eigenvalues of (7,,)r are

02(0),02(1),...,09(N — 1)

if the mutiplicities are counted.
So, we have the following theorem on the determinant of (7,)r

Theorem 2.1 Let o be a symbol on Zn X Zy given by

O'(?"L, m) =01 (n)UZ(m)a n,m € ZN:

where o1 and oy are functions on Zy. Then

et () = 505 [] 1))



3 Condition Numbers
The circulant matrix (T,,)r can be written as

(Tal)F - Q]_VIDIQNa

where
01 (0)
o1(1
. (1)
01 (N - 1)
and €y is the Fourier matrix define by
1 1 1 1 e 1
1 wy w3 wir EX wh
Qv = |1 W} wh wf e w%N_l)
1 Wi wJQV(N—I) w%N—l) . w](VN—l)(N—I)

= (WN")o<mmn<n-1
with wpn = e~ 2mimn/N,
Thus, we have the following theorem.

Theorem 3.1 Let o be a symbol defined on Ziy X Zy by
o(n,m) = o1(n)oy(m), n,m € Zy.

Then 1
(To)r = N(T@)FQZ_VIDIQN'

If 01(j) # 0 and 05(j) # 0 for j = 0,1,... N —1, then the inverse (T,)'
of (T,)F has the form

(To)p' = N(To)) 5" (T5,) ' = NQy DIy (T, ) ! (3.1)
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with

and

o2(N—1)

We can now give an upper bound for the condition number «((7,)r) of
(T,)F, which is defined by

K(To)r) = I(To)pll I(T) 511

It should be mentioned that the condition number of a square matrix is at
least equal to 1. Detailed accounts of condition numbers can be found in
[1, 8].

Theorem 3.2 Let o be a symbol defined on Ziy X Zy by
o(n,m) = o1(n)oy(m), n,m € Zy.
Then

maxo<j<n—1|01(j)] maxo<j<n_1|o2(J)]
ming<j<y—1 |o1(j)] ming<jen_1|o2(5)|

#((T5)r) <

Proof By Theorem 3.1 and (3.1), we get

(o) p) = 1(Ton) pl1 1 (Too) o LI I 1D ID 12 1%

Since \/LNQN is unitary, Q' = +Qy and the norm of a diagonal matrix
with nonzero entries is given by the maximum of the absolute values of the
entries, the theorem is proved. O



4 Computational Complexity

By Theorem 3.1, the computational complexity, i.e., the number of multi-
plications required to compute T,z, where 2z € L?(Zy), is

O(N)+O(NlogN)+ O(N) + O(NlogN) = O(NlogN).

Remark 4.1 Some comments on the computational complexity are in or-
der. Let o be a function on the phase space Zy X Zy. Then T,, the
pseudo-differential operator on Zy corresponding to the symbol o, is de-
fined by

N-1
(Toz)(n) = ) o(n,m)z(m)Fn(n)
m=0
for all z € L*(Zy), where
N-1
Z(m) = z(n)e 2mmn/N - m =0,1,...,N — 1.
n=0

For a time series z of size N, the computational complexity of FFT is
O(Nlog N) converting

z(n), n=0,1,...,N —1,
to
z(m), m=0,1,...,N—1.

After we obtain the Fourier transformed time series, N? summations and
2N? multiplications are required, so the computational complexity in gen-
eral is

O(N?) + O(Nlog N) = O(N?).

But if the symbol is separable, then the computational complexity turns
out to be just like that of the FFT, i.e., O(N log N).
5 Numerical Experiments

In this part, we first give the action of pseudo-differential operators on Zy
on chirp signals. Then three different pseudo-differential operators on Zy
are studied based on the signal composed of three frequencies.
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Example 5.1 We consider a chirp signal with linear instantaneous fre-
quency deviation. The chirp has 1024 samples in 1 second. The instanta-
neous frequency is 0 at £ = 0 and crosses 64 Hz at ¢ = 1 second. The chirp
signal and the transformed ones with three sybmols

o(n,m) =n/N,
o(n,m) =m/N
and o(n, m) = nm/N? are shown in Figure 1.
If the symbol o is only dependent on time n, where o(n, m) = %, then
n n
(T2 = 32 2 Fle) = =0,

which diminishes the original time series and is confirmed in Figure 1. If o
is only dependent on frequency m with o(n,m) = % , the bottom left plot
shows that the amplitude of the signal is increasing with frequency. And
the bottom right plot shows the combined effects of the first two symbols.

Example 5.2 In this example, three symbols are tested. They are

. (TN
o(n,m) = sin (W> ,
o(n,m) = 0.02e>™/N
and
(n.m) = ——
o =
’ (mn/N?) +1

for all n and m in Zy. We consider the following signal having length 256
with
cos (27%71) ,

n < <n<
z(n) = < cos (2m:2n) , n> 5,
5 <

|2

b

128

cos (27rin) + cos (27?6—471) ,

128 128

which is composed of low frequency for the first half time series, medium
frequency for the latter half, and high frequency inputs added when

N< <N
8_n_4.
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Figure 1: Chirp Time Series
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Original Time Series o(n,m)=sin(wn/N)

3 1 S
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S 05 =
0
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o(n,m)=0.02exp(5m/N) a(n,m):ll((mn/N2)+1)
3 1t S 1
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5 5
S 0.5 =05
0 0
0 100 200 0 100 200
time time

Figure 2: Periodic Time Series

Figure 2 shows the original time series and the transformed ones with dif-
ferent symbols. The symbol o = sin(%;) imposes a sine function along time
direction in the upper right plot, the symbol o = 0.02¢>™/" has its impact
only on the frequency in the bottom left plot, which separates the high and
low frequency parts. And the bottom right plot shows the mixed impact on

time and frequency with o = m
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