
The Dirichlet Divisor Problem,
Traces and Determinants for

Complex Powers of the Twisted
Bi-Laplacian

Xiaoxi Duan and M. W. Wong

Department of Mathematics and Statistics
York University

4700 Keele Street
Toronto, Ontario M3J 1P3

Canada
e-mail: duanxiao@mathstat.yorku.ca,

mwwong@mathstat.yorku.ca

Abstract Estimating the counting function for the eigenvalues of the twisted
bi-Laplacian leads to the Dirichlet divisor problem, which is then used to
compute the trace of the heat semigroup and the Dixmier trace of the in-
verse of the twisted bi-Laplacian. The zeta function regularizations of the
traces and determinants of complex powers of the twisted bi-Laplacian are
computed. A formula for the zeta function regularizations of determinants
of heat semigroups of complex powers of the twisted bi-Laplacian is given.

Mathematics Subject Classification: 47F05, 47G30

Keywords: twisted bi-Laplacian, Dirichlet divisor problem, counting func-
tion, complex powers, zeta function, Riemann zeta function, trace, heat
semigroup, Dixmier trace, inverse, zeta function regularizations, determi-
nant

1



1 Introduction

The twisted Laplacian L on R2 is the second-order partial differential oper-
ator given by

L = −∆ +
1

4
(x2 + y2)− i

(
x
∂

∂y
− y ∂

∂x

)
, (1.1)

where

∆ =
∂2

∂x2
+

∂2

∂y2
.

Thus, the twisted Laplacian L is the Hermite operator

H = −∆ +
1

4
(x2 + y2)

perturbed by the partial differential operator −iN , where

N = x
∂

∂y
− y ∂

∂x

is the rotation operator.
That H is called the Hermite operator is due to the fact that Hermite

functions are the eigenfunctions of H. See, for instance, Section 6.4 in [9].
That N is called the rotation operator can be attributed to the fact that in
polar coordinates,

N =
∂

∂θ
,

which is the simplest differential operator on the unit circle centered at the
origin.

The twisted Laplacian appears in harmonic analysis naturally in the
context of Wigner transforms and Weyl transforms [2, 12]. In the paper
[1], it is shown that L is essentially self-adjoint, and the spectrum Σ(L0) of
the closure L0 is given by a sequence of eigenvalues, which are odd natural
numbers, i.e.,

Σ(L0) = {2k + 1 : k = 0, 1, 2, . . . }.

It should be noted, however, that each eigenvalue has infinite multiplicity.
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Renormalizing the twisted Laplacian L to the partial differential opera-
tor P given by

P =
1

2
(L+ 1), (1.2)

we see that the eigenvalues of P are the natural numbers 1, 2, . . . , and each
eigenvalue, as in the case of L, has infinite multiplicity.

Now, the conjugate L of the twisted Laplacian L is given by

L = −∆ +
1

4
(x2 + y2) + i

(
x
∂

∂y
− y ∂

∂x

)
(1.3)

and after renormalization, we get the conjugate Q of P given by

Q =
1

2
(L+ 1). (1.4)

The aim of this paper is to analyze the heat kernels and Green functions
of complex powers of the twisted bi-Laplacian M defined by

M = QP = PQ =
1

4
(H − iN + 1)(H + iN + 1), (1.5)

where P and Q commute because it can be shown by easy computations
that H and N commute, i.e., HNf = NHf for all functions f in C∞(R2).

It is proved in [3] that M is essentially self-adjoint on L2(R2). The
unique self-adjoint extension of M on L2(R2) is again denoted by M .

In order to describe the spectral properties of M precisely, let us first
recall that the Fourier–Wigner transform V (f, g) of two functions f and
g in the Schwartz space S(R) on R is the function in the Schwartz space
S(R2) on R2 given by

V (f, g)(q, p) = (2π)−1/2

∫ ∞
−∞

eiqyf
(
y +

p

2

)
g
(
y − p

2

)
dy

for all q and p in R. For k = 0, 1, 2, . . . , the Hermite function ek of order k
is defined on R by

ek(x) =
1

(2kk!
√
π)1/2

e−x
2/2Hk(x), x ∈ R, (1.6)
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where Hk is the Hermite polynomial of degree k given by

Hk(x) = (−1)kex
2

(
d

dx

)k
e−x

2

, x ∈ R. (1.7)

Now, for j, k = 0, 1, 2, . . . , we define the function ej,k on R2 by

ej,k(x, y) = V (ej, ek)(x, y), x, y ∈ R. (1.8)

It can be shown that {ej,k : j, k = 0, 1, 2, . . . } forms an orthonormal basis
for L2(R2). See, for example, Theorem 21.2 in [12].

The following result is Theorem 1.1 in [3].

Theorem 1.1 The eigenvalues and the eigenfunctions of the twisted bi-
Laplacian M are, respectively, the natural numbers 1, 2, 3, . . . , and the func-
tions ej,k, j, k = 0, 1, 2, . . . . More precisely, for n = 1, 2, 3, . . . , the eigen-
functions corresponding to the eigenvalue n are all the functions ej,k where
j, k = 0, 1, 2, . . . , such that

(j + 1)(k + 1) = n.

By means of Theorem 1.1, we see that the multiplicity of each eigenvalue
n of the twisted bi-Laplacian is equal to the number d(n) of divisors of the
positive integer n. We give as Corollary 1.2 in [3] an estimate on the counting
function N(λ) defined as the number of eigenvalues of M less than or equal
to λ. In fact, we can see that the following result, which is Corollary 1.2 in
[3], is the well-known result on asymptotic behavior of the Dirichlet divisors
in the perspective of the counting function of the twisted bi-Laplacian, in
which the multiplicity of each eigenvalue is taken into account.

Theorem 1.2 For all λ in [0,∞),

N(λ) =
∑
n≤λ

d(n) = λ lnλ+ (2γ − 1)λ+ E(λ), (1.9)

where γ is Euler’s constant and

E(λ) = O(
√
λ)

as λ→∞.
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Remark 1.3 More precise results than Theorems 1.1 and 1.2 can be found
in [4]. A complete and classical proof of Theorem 1.2 can be based on Theo-
rem 3.12 in [10] and the above-mentioned connection between the Dirichlet
divisors and the twisted bi-Laplacian. It is interesting to point out the con-
nection with the Dirichelet divisor problem, which asks for the best number
µ such that

E(λ) = O(λµ)

as λ → ∞. The conjecture is that µ = 1/4, but it is a result of Hardy [5]
that µ = 1/4 does not work. The best result to date seems to be due to
Soundararajan [8].

Theorem 1.2 is used to compute the trace of the heat semigroup of M in
Section 2 and the Dixmier trace of the inverse of M in Section 3. Another
theme of this paper is to compute the zeta function regularizations of the
trace and the determinant of the complex power Mα of M , where α ∈ C.
To that end, we use the complex-valued function ζMα defined formally by

ζMα(s) = tr((Mα)−s) = tr(M−αs), s ∈ C,

in Section 4 to compute the zeta function regularizations of the trace and
determinant of Mα, and give a formula for the zeta function regularization
of the determinant of the heat semigroup e−tM

α
.

2 The Trace of the Heat Semigroup

Theorem 2.1 For t > 0,

tr(e−tM) = (γ − ln t)t−1 +O(tµ),

where µ > 1
4
.

Proof Since

tr(e−tM) =

∫ ∞
0

e−tλdN(λ),

it follows from an integration by parts that for t > 0,

tr(e−tM) = e−tλN(λ)
∣∣∞
0

+ t

∫ ∞
0

e−tλN(λ)dλ = t

∫ ∞
0

e−tλN(λ) dλ. (2.1)
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So, using the formula for N(λ) in Section 1 and (2.1), we get for t > 0,

tr(e−tM) = t

∫ ∞
0

e−tλ(λ lnλ+ (2γ − 1)λ+O(λµ)) dλ

= t

∫ ∞
0

e−tλλ lnλ dλ+ (2γ − 1)t−1 +O(tµ). (2.2)

Since ∫ ∞
0

e−tλλ lnλ dλ = − d

dt

∫ ∞
0

e−tλlnλ dλ =
d

dt

[
1

t
(γ + ln t)

]
= (1− γ − ln t)t−2, (2.3)

it follows from (2.2) and (2.3) that for t > 0,

tr(e−tM) = (γ − ln t)t−1 +O(tµ),

as required.
2

3 The Dixmier Trace of the Inverse

We first begin with a version of the Dixmier trace that is tailored for the
inverse of the twisted bi-Laplacian M . The book [7] is a comprehensive
account of Dixmier traces and related topics. In particular, Chapter 1 of
the book [7] contains motivational and background material on Dixmier
traces.

Let A be a positive and compact operator on a complex and separable
Hilbert space X. Let

λ1(A) ≥ λ2(A) ≥ · · ·

be the eigenvalues of A arranged in decreasing order with multiplicities
counted. For a positive integer k, we say that A is in the kth Dixmier trace
class if {

1

lnkN

N∑
j=1

λj(A)

}∞
N=2

∈ l∞.
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If A is in the kth Dixmier trace class such that limN→∞
1

lnkN

∑N
j=1 λj(A)

exists, then the kth Dixmier trace trk(A) of A is given by

trk(A) = lim
N→∞

1

lnkN

N∑
j=1

λj(A).

Using Theorem 1.2, we get the following theorem for the Dixmier trace
of M−1.

Theorem 3.1 M−1 is in the second Dixmier trace class and

tr2(M−1) =
1

2
.

Proof Let us compute
∑

n≤x
d(n)
n

for large and positive integers x, say, for
x > 2. To do this, we use the partial summation formula to the effect that∑

n≤x

anf(n) = S(x− 1)f(x)−
∫ x

1

S(t)f ′(t) dt, (3.1)

where {an}∞n=1 is a sequence with positive terms, f is a positive and differ-
entiable function on (0,∞), and S is the function on [1,∞) given by

S(t) =
∑
n≤t

an, t ≥ 1. (3.2)

Indeed, ∫ x

1

S(t)f ′(t) dt =
x−1∑
n=1

∫ n+1

n

S(t)f ′(t) dt

=
x−1∑
n=1

∫ n+1

n

(
n∑
k=1

ak

)
f ′(t) dt

=
x−1∑
n=1

n∑
k=1

ak(f(n+ 1)− f(n)).
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Interchanging the order of summation, we get∫ x

1

S(t)f ′(t) dt =
x−1∑
k=1

x−1∑
n=k

ak(f(n+ 1)− f(n))

=
x−1∑
k=1

ak(f(x)− f(k)).

Therefore

S(x− 1)f(x)−
∫ x

1

S(t)f ′(t) dt =
x∑

n=1

anf(n),

which is (3.1). Applying (3.1) and (3.2) with an = d(n) and f(n) = 1
n
, and

using the asymptotic formula for the function S as given by the Dirichlet
divisor problem, we get∑

n≤x

d(n)

n
= S(x− 1)f(x)−

∫ x

1

S(t)f ′(t) dt

=
1

x
((x− 1) ln (x− 1) + (2γ − 1)(x− 1) +O(

√
x))

+

∫ x

1

(
ln t

t
+ (2γ − 1)t−1 +O(t−3/2)

)
dt. (3.3)

Since
(x− 1)ln (x− 1) = x lnx+O(

√
x) (3.4)

as x→∞, and ∫ x

1

ln t

t
dt =

1

2
ln2x. (3.5)

it follows from (3.3)–(3.5) that∑
n≤x

d(n)

n
=

1

x
(x lnx+ (2γ − 1)x+O(

√
x))

+
1

2
ln2x+ (2γ − 1)lnx+O(x−1/2)

=
1

2
ln2x+ 2γ lnx+ (2γ − 1) +O(x−1/2)

as x→∞. This completes the proof. 2

8



4 Zeta Function Regularizations

We begin with the following easy observation.

Lemma 4.1 Let α ∈ C. Then for all s with Re (αs) > 1,

ζMα(s) = ζ2(αs).

Proof Let s ∈ C be such that Re (αs) > 1. Then by Theorem 1.1, the
eigenvalues of M−αs are n−αs, n = 1, 2, . . . , and the multiplicity of n−αs is
equal to the number d(n) of Dirichlet divisors of n. Therefore

ζMα(s) =
∞∑
n=1

d(n)

nαs
. (4.1)

So, a straightforward computation gives

ζ2(αs) =
∞∑
µ=1

1

µαs

∞∑
ν=1

1

ναs
=
∞∑
n=1

1

nαs

∑
µν=n

1 =
∞∑
n=1

d(n)

nαs
.

2

The zeta function regularizations of the trace and the determinant of
Mα, denoted by trR(Mα) and detR(Mα) respectively, are defined by

trR(Mα) = ζMα(−1)

and
detR(Mα) = e−ζ

′
Mα

(0).

The physical meanings of these quantities can be found in, e.g., the paper
[6].

Theorem 4.2 Let α ∈ C \ {−1}. Then

trR(Mα) = ζ2(−α).

Proof By Lemma 4.1 and the analytic continuation of the Riemann zeta
function to a meromorphic function on C with only a simple pole at s = 1,
we see that

trR(Mα) = ζMα(−1) = ζ2(−α).

2
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Remark 4.3 It is well-known from, say, [11] that

ζ(−1) = − 1

12
.

Hence

trR(M) =
1

144
.

Remark 4.4 In the case when α = −1, the zeta function regularization of
the inverse M−1 is equal to infinity. The Dixmier trace instead of the trace
of the inverse M−1 is a finite number.

Theorem 4.5 Let α ∈ C. Then

detR(Mα) = (2π)−α/2.

Proof As in Theorem 4.2,

detR(Mα) = e−ζ
′
Mα (0) = e−2αζ(0)ζ′(0).

It can be found in [11] again that ζ(0) = −1
2

and ζ ′(0) = −1
2

ln(2π). So,

detR(Mα) = (2π)−α/2.

2

As an application, we can give a formula for the determinants of the
heat semigroups of complex powers of the twisted bi-Laplacian.

Theorem 4.6 Let α ∈ C \ {−1}. Then for t > 0,

detR(e−tM
α

) = e−tζ
2(−α).

Proof By Theorem 1.1, the eigenvalues of e(−tMα)−s are etn
αs, n = 1, 2, . . . ,

and the multiplicity of the eigenvalue etn
αs is d(n). Therefore

ζe−tMα (s) = tr((e−tM
α

)−s) =
∞∑
n=1

d(n)etn
αs, s ∈ C.
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So, by equation (4.1) and Theorem 4.2,

ζ ′e−tMα (0) = t
∞∑
n=1

d(n)nα = tζ2(−α).

Thus,
detR(e−tM

α

) = e−ζ
′
e−tMα (0) = e−tζ

2(−α),

and this completes the proof. 2

Remark 4.7 By Theorems 4.2 and 4.6, we see that for α ∈ C \ {−1},

detR(e−tM
α

) = e−ttrR(Mα), t > 0,

which is in conformity with the well-known relationship between the deter-
minant and the trace of a square matrix A given by

det (eA) = etr (A).
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